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Abstract— We consider the problem of adaptively monitoring
a wildfire front using a mobile agent (e.g., a drone), whose
trajectory determines where sensor data is collected and thus
influences the accuracy of fire propagation estimation. This is a
challenging problem, as the stochastic nature of wildfire evolu-
tion requires the seamless integration of sensing, estimation, and
control, often treated separately in existing methods. State-of-
the-art methods either impose linear-Gaussian assumptions to
establish optimality or rely on approximations and heuristics,
often without providing explicit performance guarantees. To
address these limitations, we formulate the fire front monitoring
task as a stochastic optimal control problem that integrates
sensing, estimation, and control. We derive an optimal recursive
Bayesian estimator for a class of stochastic nonlinear elliptical-
growth fire front models. Subsequently, we transform the result-
ing nonlinear stochastic control problem into a finite-horizon
Markov decision process and design an information-seeking
predictive control law obtained via a lower confidence bound-
based adaptive search algorithm with asymptotic convergence
to the optimal policy.

I. INTRODUCTION

The 2025 Southern California wildfires were among the
most devastating in the state’s history: the Palisades Fire in
Los Angeles and the Eaton Fire in Altadena burned nearly
40,000 acres, destroyed over 16,000 structures, and displaced
hundreds of thousands of people [1]. Accurate estimation
of wildfire propagation is therefore critical for effective
disaster response [2]-[4] and informed decision-making [5],
[6]. Motivated by this need, this work investigates adaptive
monitoring of a stochastic wildfire front using a mobile
agent.

The task requires planning the agent’s trajectory over a
rolling finite horizon to minimize uncertainty in estimating
the fire’s evolution from sensor data. At each step, the
agent re-plans based on the current environment, yielding
a complex problem that demands an integrated approach to
sensing [7]-[9], estimation [10]-[12] , and control [13]-[15].
Existing methods often address only parts of this problem,
either by decoupling sensing, estimation , and control, or
by simplifying assumptions [16], [17]. The problem consid-
ered in this work relates to active sensing [18], informa-
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tion gathering [19], and sensor management [20]. Sensor
management approaches typically address stateless sensors
without dynamics, focusing on placement or node selection,
and are therefore limited in scenarios where sensor states
evolve (e.g., drones equipped with onboard sensors). In such
dynamic settings, adaptive control strategies are required. For
stochastic dynamic processes, many methods adopt myopic
control [21], whereas non-myopic schemes are typically
greedy [22] or heuristic with sub-optimality guarantees [23].
Approaches that provide optimality guarantees often assume
linear dynamics with Gaussian noise and apply the certainty
equivalence principle (CEP), thereby reducing the problem
to deterministic optimal control [24]. These assumptions,
however, do not hold for the problem addressed in this work.
In summary, this work integrates sensing, estimation, and
control within a unified stochastic optimal control (SOC)
framework for adaptive wildfire-front monitoring using a
mobile agent. We develop a recursive Bayesian estimator
for elliptical fire-front dynamics under limited sensing and
uncertainty, and reformulate the nonlinear SOC problem as a
finite-horizon Markov decision process (MDP). The MDP is
solved via a lower-confidence-bound (LCB) guided adaptive
search that asymptotically converges to the optimal policy.

II. PROBLEM FORMULATION

A. Problem Objective

Let a mobile agent be at state y; at time step ¢, and let
the agent’s belief distribution over the fire front state X;
be denoted by B;(X:|Z1.¢) (abbreviated as B;) which was
computed using measurements Zi.; = [Z1,...,Z:] up to
time step t. The objective is to compute the optimal sequence
of control inputs {w,...,u4+7_1¢} over a finite rolling
planning horizon of 7' time steps that minimizes:

T
EztlﬂT {Z C- (Bt+7t7Zt+7t(ut+‘rl|t))} . (1)
T=1

Here, the subscript ¢ + 7|t denotes predicted quantities at
time step ¢t + 7 for 7 € {1,...,T} within the planning
horizon, based on information available at time step t.
The cost function C, is a bounded, real-valued function
that takes as input: a) the predictive density B, |t ie.,
B;_T“(Xt-ﬁ-r\t|Z1:t+7'—1|t)7 of the fire front state at time
t + 7|t, and b) the future i.e., predicted, measurement
Zyyrlt(Upyr—1)¢), Which will be received given that the
agent executes the control input u;,_1); and moves to the
predicted state y; ;. It then returns a value representing the



uncertainty of the fire front state captured in the resulting
(pseudo) posterior belief B, ;.

An information-rich measurement set is one that re-
duces the dispersion in the posterior, which is the agent’s
objective over the planning horizon. The expectation is
taken with respect to the future measurement set Z}'7 =
{Zi41)t5- - -+ Zeyr)e }- Subsequently, the agent executes the
first control input in the sequence, i.e., Ut transitions to its
new state y;y1, receives the real measurement Z;;, com-
putes the posterior belief Byy1(X;41]Z1.1+1), and repeats the
process described above for time step ¢ + 1.

B. Fire Front Propagation Model

In this work, as we discuss next, we employ a stochastic
adaptation of the deterministic elliptical fire propagation
model proposed in [25]. This model, which is currently
utilized in various fire-area simulators [26], describes the
spatiotemporal evolution of a fire front using a nonlinear
system of first-order differential equations. Specifically, the
fire front is represented as an ellipse defined by a series of
N vertices that collectively delineate the propagating fire’s
edge at a specific moment. The spatiotemporal discrete-time
dynamics of vertex ¢ € {1,..., N} at time step ¢ are given
by:

ol =2l |+ Atdl ()

where xi = [xi,yi]T € R? is the state of vertex i composed
of 2D Cartesian coordinates, At is the sampling interval, and
the fire growth velocity at vertex ¢ is given by z;_; =

03(i) cos (6(1)) SC() — a3(9)sin (9) OS() _
() \/( %((?) ()) 2%((Z) SC((Z)(Q)) CS(i )+ v
—a? (i) sin (0(¢ as5(1) cos (0(i O i
VAT + ad()SC)? Hew
where
SC(i) = xi sin (8(i)) + y¢ cos (0(i)) ,
CS(i) = xi cos (0(7)) — y. sin (6(4)) , 3)
C1(i) = az(i) sin (0(i)) ,
Cy(i) = as(i) cos (0(i)),

and [xi,y%]" are the components of the tangent vector at
vertex ¢, providing the local orientation of the fire front at
that point.

Environmental conditions, such as fuel type and weather,
local to each vertex, affect the forward fire propagation
rate and direction. These factors include wind direction and
speed, denoted by 6 and wj, respectively, as well as the fire
spread rate due to fuel type, denoted by 7. These parameters
are stochastic and can vary throughout the environment.
Therefore, each vertex may be affected differently depending
on the fire front’s extent and the environmental variability.

Specifically, we denote (i) € [0, 27| as the wind direction
affecting vertex ¢, the wind speed at the location of vertex 7 as

ws(7) € R, and the fire spread rate as 7¢(i) € RT. Here,
9( ), ws (@), r(4), Vi, are random realizations of the wind

direction, wind speed, and fire spread rate at the location of
vertex 1.

The parameters «(2), (i), and as3(i) denote the shape
parameters governing the elliptical fire growth from vertex ¢,
representing respectively the lengths of the semi-minor axis,
the semi-major axis, and the distance from the ignition point
to the center of the ellipse, defined respectively as:

N JZEEZ)
M= 518
rr(i) + 1%2) )
as(i) = ——5 L,
as(i) = as(i) — 1?;2)

where HB(i) is the head-to-back ratio accounting for the
difference between the fire’s forward (head) and backward
(back) spread from the ignition point, while LB(i) is the
length-to-breadth ratio which determines the overall elonga-
tion of the fire’s elliptical shape. These are defined as:

LB(i) + (LB(i)? = 1)*°

B(i) = — :
LB(i) — (LB(i)? — 1
LB(i) = 0.936 exp(0.2566 w,(i))
+ 0.461 exp(—0.1548 w,(i)) — 0.397.

)0.5’
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For a more in-depth description these parameters we refer
the reader to [26]. Subsequently, the propagation of the fire
front process X; = [z},...,2N]T € X is more compactly
expressed as:

Xi = &(Xo1, B, (©6)

where E; ~ Pg, with E; € [0,27]Y x [0,00)" x [0,00)%,
denotes a random realization of {0(i),ws(i), ¢ (i)},
drawn from the PDF Pg, which captures the stochasticity
of the fire front propagation acting as a stationary process
noise.

C. Agent Dynamics and Sensing Model

An autonomous mobile agent represented by a point-mass
object, evolves inside a bounded planar environment £ C R?
according to discrete-time dynamics of the form [27], [28]:

Y = fa(Ye—1,ui-1) @)

where y; € ) is the state of agent at time ¢, and u; € U is
the control input. In addition, the agent has a finite sensing
range for observing its surroundings (i.e., through a camera),
which is given by a circular region with radius R, i.e., O; =
{x € R?| ||z —y?|| £ R,}, where 4 is the agent’s position
at time t.

The agent uses its camera to observe the state of the fire
front, i.e., by taking snapshots and determining the location
of the fire front from the image snapshots using image
processing (i.e., object detection). Due to sensing and image
processing imperfections, this process carries a certain degree
of inaccuracy, resulting in noisy observations. Specifically,



for fire front vertex ¢ with true state xé, the agent observes
the measurement z; inside its sensing range according to:

2 = h(x}) + w}, (8)

where h(-) is a function that relates the true states to the
received measurements, and w,@ ~ N(0, O'glgxg) represents
measurement noise. The noise is independent and identically
distributed (i.i.d.) according to a zero-mean Gaussian distri-
bution with variance a , where Is,o is the 2 x 2 identity
matrix. Additionally, w! is independent of the process noise
described in the previous section.

The object detection algorithm often produces multiple
fragmented pixel blobs for the same fire-front vertex, so that
! is associated with the measurement vector [zz . ZZ n‘].
The number of such blobs depends on the true vertex
location, and is modeled as a Poisson random variable with
rate \(x%). Thus, a vertex ! may yield n} ~ Pois(A\i(z}))
detections within the sensing range. The resulting measure-
ment set follows a Poisson point process [29] with intensity

= Ai(a) p(2]ay),

and ~(z|zi,y;) = 0 otherwise, where p(z|z}) =
N (z;h(z}),025%2) is the normalized measurement likeli-
hood restricted to O;.

Vi (2|t ye) i € Oy, 9)

III. ADAPTIVE MONITORING VIA
INFORMATION-SEEKING PREDICTIVE CONTROL

A. Fire Front Recursive State Estimation

Bayesian recursive state estimation for systems with fixed-
dimensional state and measurement vectors is formulated
through the predictor-corrector recursion:

B (xi|z1:0-1) = /p(xt|$t—1)Bt—l(xt—1|21:t—1)dmt—lv

p(zeze) By (2¢|21:0-1)

B
(ﬂft|21 t) fp Zt\l'f) ¢ (It\Zl:t—l)dzt

(10)

where with slight abuse of notation in Eq. (10) z; € R%
is the state of the system, z; € R% is the received mea-
surement, p(x;|x;—1) is the transitional density governed by
the stochastic process dynamics, p(z¢|x¢) is the measurement
likelihood function, B; (x¢|z1.t—1) is the predictive belief
distribution at time ¢, and By(x¢|z1.¢) is the posterior belief
of x; when all measurements z1.; = [21, ..., 2] up to time ¢
have been received. Subsequently, given the recursion in Eq.
(10) the minimum mean square estimator (MMSE) £MMSE s
given by:

AltVIMSE /It Bt(l“t|21 f) dxy. (11)
However, in our problem, at time ¢ the observation is a
point pattern of random cardinality, not a fixed-length vector,
hence the standard vector-likelihood underlying Eq. (10) is
not directly applicable. We therefore replace the likelihood in
Eq. (10) with the appropriate set-likelihood and apply Bayes’
rule with that form. To achieve this, first observe that the
transitional density p(z¢|z;—1) in Eq. (10) becomes:

p(Xe|Xi1) = / S(Xi — €(Xi—1, Er1)) Pu(Er_) dEr_1,

as direct consequence of the fire front stochastic dynamics,
where §(-) is the Dirac delta function. Subsequently, we
can compute the predicted belief B; (X;|Z1.;—1) at time
step t, assuming the posterior density at the previous time
step, Bi—1(X:_1|Z1.4—1), is known. The posterior belief
B (X¢|Z1.+) can then be obtained by incorporating the mea-
surement set Z; via the correction step shown in Eq. (10),
provided that an expression for the measurement likelihood
function p(Z;| Xy, y:) is available. This process can then be
recursively applied to the next time step.

Proposition: Let X; = [z},...,zN]T be the state of the
fire front at time t, and let Z; = [z},...,2{"*] denote the
received measurement vector at time step t. The likelihood
of Z, given X; and y; is given by: p(Z| X, y:) =

exp( Z)\ xf > H (Z’Y: Zk|93f7yt >7 (12)

k=1

where \i(zi) = [ o, vi(z | @, y;) dz is the expected number
of detections from vertex i, vi(z|at,y;) is the Poisson
intensity corresponding to vertex ¢ within the sensing region
Oy as defined in Eq. (9), and m,! denotes the factorial of m;.
Consequently, p(Z;|X¢, y:) can be used directly in Eq. (10)
enabling the handling of multiple objects and multiple mea-
surements without requiring explicit measurement-to-object
association, and allowing the computation of the MMSE as
discussed previously.

Proof: Due to the independence of noise realizations
in the measurement process, the measurements are
conditionally independent given the fire front state X;.
As a result, the Poisson processes defined by Eq. (9)
are themselves independent, which implies that the
combined set of all measurements generated by all
processes forms a superposition of Poisson ]Z)Vomt processes,
with total intensity DI'y(z|Xi,y:) = Yooy 7vi(zlzl, ue),
and probability density functlon (PDF) p(z|Xy) =

Te(2| Xt ye) (fo Le(2| X, y1) dZ) = T(2|Xe, yo) A"
Subsequently, the joint likelihood p(Zt|Xt, yt) of receiving
my measurements at time t can be decomposed as
p(Zi X, y)) = pm(me)p(zt, ..., 20" |/me, Xi,y:), where
pm(m¢|y) is the probability of receiving m; observations
inside the sensing range, and p(z},...,2""|m¢, X, y:)
is the conditional joint likelihood function. The
term  p.,(my,|y:) follows a Poisson distribution with
parameter A;, i.e., pp(mely) = me! Tt exp(—A AT
In addition, the joint likelihood decomposes as
p(zty 2 me, X)) = [T 1P(Zk|Xt,yt) and
thus T2, p(zel Xeyye) = TI72, Telonl X, ye) A7 Since
each vertex only contributes locally to its own measurement
process, it follows that [[, Ty(zk|Xe, )Nyt =

i (Zf\; %i(zk|ffivyt)A{1)~ Since [, T'¢(2|X¢,y¢)dz

= SN, Jo, vizlaty)dz = S Mi(a)), the result in
Eq. (12) follows directly. [ ]



B. Information-seeking Predictive Control

The problem in Sec. II-A is addressed via the information-
seeking predictive controller shown in Problem (P1), for-
mulated as a receding horizon SOC problem. The goal
is to compute control inputs {u;,_1¢}7_; that optimize
the agent’s sensing behavior by minimizing the cumulative
uncertainty in the (pseudo) posterior beliefs of the fire front
states, as defined in Eq. (13a). At each time step ¢, only the
first control input wu;; is applied, and the process is repeated
over a shifted horizon.

Problem (P1): Information-seeking Predictive Control

T
]EztlzT {Z VTCT(Bt+T|t(.|Z1:t+Tt))} (13a)

min
T ) =
subject to:

;r‘l'\t = /p(XT|X7—71) BtJr'rfl\t(X‘rfll') dX‘rfh (13b)
Byi = Byji—1, (13¢)
Ytqr|t = fa(yt+7—1\taut+7—l\t)a (13d)
Ytit = Ytjt—1, (13e)
Bt+r\t("Z1:t+r|t) xXp (Zt+7|t|XT, yt+r\t> Bt_+7'|t’ (131)
ytey,UtGZ/{,XteX,ZtEZ, (13g)
C;el0,1],ve (0,1],7={1,...,T}. (13h)

For each prediction time step 7 € {1,...,T} in the

horizon, the agent predicts the fire front state X, forward in
time using the Bayesian prediction step, based on the tran-
sition density p(X,|X,_1) and the (pseudo) posterior belief
from the previous time step, Byjr—1)¢(X7—1|Z1.47—1J¢), @S
shown in Egs. (13b)-(13c). The constraints in Eqgs. (13d)-
(13e) arise from the agent dynamics, which are assumed
to be deterministic in this work. At the predicted time
step 7, given the agent’s predicted state y;, ., and sensing
range Oy, .|, the agent receives the predicted measurement
set Z; ¢ This set is then used to compute the posterior
belief By ;¢(X+|Z1.44-¢) via the Bayesian correction step,
as shown in Eq. (13f), using the joint likelihood function
P(Ziyrit| Xr, Yeqr)e) and the predicted density. This poste-
rior distribution subsequently becomes the prior for the next
prediction step, continuing the recursive process. The pre-
dicted measurements Z, ,|; represent hypothetical observa-
tions based on the planned control inputs and the anticipated
fire front state. Since actual measurements are only available
after executing the control actions, the objective in Eq. (13a)
requires taking an expectation over all possible future mea-
surement sequences. This enables informed decision-making
by accounting for potential outcomes without executing the
corresponding trajectories.

Equations (13b)-(13f) admit no closed form: the model
is nonlinear and non-Gaussian with set-valued (multi-object,
multi-measurement) observations, so Kalman-type filters are
inapplicable. Therefore, the recursion is implemented us-
ing Sequential Importance Resampling (SIR), i.e., particle

filtering. Specifically, the belief B, is represented by a
set of weighted particles B, = {ng),Xg)}lstl, where
X9 = [L,...,2N]T. These particles are propagated to
the next time step according to the process dynamics and
reweighted using the likelihood function to compute the
posterior. For notational convenience, we will often write
t+7|t as 7 when no ambiguity arises. The functional Cigrt
Biyrit(Xigrit|Z1:t4-t) — [0,1] in Eq. (13a) quantifies
the uncertainty of the fire-front state X, ., encoded in
the posterior distribution at time ¢ + 7|¢ , conditioned on
all hypothetical measurements Z.; ;. This uncertainty is
measured by the Risk-Weighted Dispersion (RWD) defined
as:

1 €
Ciprit(Beyrit) = w Z R(e) det( t+T|t)’
ecé

(14)

where the environment £ is discretized in space to form a
2D grid £, composed of a finite number of non-overlapping,
equally sized cells £ = {eq, ... 1€ }» such that Ulzi g =
E. The term R(e) € [0,1] denotes the risk value associated
with cell ¢, reflecting the severity of fire presence in that
region. The random quantity det (%] 4] ;) is the determinant
of the sample covariance matrix % e computed from all
particle points residing in cell ¢ at time step ¢+ 7|t, and w is
a scaling factor ensuring that C; -, (B.4-|¢) € [0, 1]. Finally,
the parameter v € (0, 1] in Eq. (13a) is a discount factor that
controls the relative importance of future decisions.

C. Adaptive LCB-guided Policy Search

Problem (P1) is a stochastic, multi-dimensional, non-
linear, and non-convex optimization problem that cannot be
directly solved in its original form. However, we can address
an equivalent version by reformulating (P1) as a Markov
Decision Process (MDP) [30]. To achieve this, we assume
that the agent’s control inputs u; € U can be reduced to
a finite set U, consisting of |U| discrete control vectors
u; € U. This discretization, in turn, leads to a finite set
of possible agent states 3, € Y;. Consequently, (P1) can
be reformulated as an MDP (S,U,7T,C), where S is the
state space of the system, and an individual state s € S is
represented as the tuple s; = (B, §j). Note that the fire front
process evolves independently of the agent’s actions. The
transition function 7 : § x U — & describes the evolution
of the system in response to agent actions. Although the
agent’s actions are deterministic in our setting, the transition
function 7 remains stochastic due to the randomness in the
agent’s observations upon executing an action. Specifically,
we have: T : p(s; = (B.9)|st—1 = (B,§),0t—1 = u).
The cost function C assigns a cost to a specific state s’
resulting from applying action @ at state s. With slight abuse
of notation, we denote it as C(s' = (B, ¢)), which effectively
operates on the posterior belief B in state s’, derived from
the agent state §j. The cost is defined according to Eq. (14).

We define a finite-horizon open-loop policy over T steps
as the control input sequence m = {t, 1412, € UT. Let
II7 = U” denote the set of all such admissible policies. Each
policy is a predetermined sequence of actions evaluated via



simulation of the MDP’s stochastic state transitions. Given
that the agent starts from an initial state s; = (B, ¢;) at
time step ¢, a policy m € Il can then be simulated under
the MDP to obtain:

T
‘/tﬂ"(St) =K {Z yTCT (3?_,_7_”)} 5
T=1
where sT

KA is the state encountered at level 7 in the horizon
under policy 7 when starting from state s,. Subsequently, the
optimal policy that minimizes the expected cumulative cost
over the horizon is given by

5)

7% = arg min V" (s;) (16)

wellp

Observe that the optimization problem in Eq. (16) is equiva-
lent to Problem (P1) under the assumption of a finite number
of admissible control inputs. Solving this equivalent MDP
formulation however, introduces its own set of challenges.
In particular, the continuous belief-space represented by
particles and the stochastic nature of the measurements result
in an effectively infinite state space. This makes classical
dynamic programming (DP) methods, such as value iteration
and backward induction, infeasible. These approaches rely on
a finite state space to compute value functions backward from
the planning horizon and therefore do not apply here. Fur-
thermore, the transition dynamics are not explicitly known in
closed form, nor can they be represented in a tabular format.

To solve this problem we build upon the Upper Confidence
Bound 1 (UCB1) framework [31] and we treat each sequence
m = {G4r-1t}—y; € UT as an arm in a multi-armed
bandit. We use rollouts to simulate policy outcomes and
employ a UCB1-like adaptive selection strategy to efficiently
balance exploration and exploitation. In particular, the UCB1
algorithm iteratively computes an upper confidence bound
score on the expected reward for each arm (where arms are
considered the actions), by adding the sample mean reward of
the arm to an exploration bonus that depends on both the total
number of arm pulls and the number of pulls for that specific
arm. This formulation is grounded in the “optimism under
uncertainty” principle and leverages concentration inequal-
ities (i.e., Chernoff-Hoeffding bounds) to guarantee near-
optimal regret (i.e., the expected loss between the optimal
policy and selected policies). Based on these scores, the
policy always selects the arm with the highest current upper
confidence bound, which enables asymptotic convergence
to the optimal policy [31]. The proposed adaptive-search
algorithm iteratively computes a Lower Confidence Bound
(LCB) on the expected total cost associated with each T-
finite control sequence, which is then used to adaptively
select the next policy to simulate. Specifically, for an agent
at state s;, we define the LCB score of a policy 7 € Il at
iteration n as:

n _ 2lnn it ™ 0
LCB”(W, St) _ Q (ﬂ', St) I (m)? 1 (71') 7& )
LCB,, otherwise,
a7

where I™(m) denotes the number of times policy =
has been simulated up to iteration n, and Q"(w,s;) =

Algorithm 1 Adaptive LCB-guided Search
1: Input: Policy set IIr, Initial state s, = (B, §:)
2: Initialize 1°(7) = 0,Vr € lr
3forn=1,...,(Nmax > |lr|) do

4: Sample policy: #=arg min LCB"(x, s;) (Eq. (17))
5: for r=1,...,7T do

6 Compute predictive density: B;T‘ , via Eq. (13b)
7 Move to new state: 7t = fa (Gesr—1jt: Fr)
8 Sample meas.: Zyyrp ~ P(Z| X yrpt, Ugr|t)

9 Compute posterior: By ,|; via Eq. (13f)

10 Compute stage cost: ¢; = c;_1 + V7 Cr(Biyrp)
11: end for

12: Update LCB: Q"(7, s;) = mean (Q”_l(fr, St)s cT)
13: I"(7) = I'(#) + 1

14: end for

15: Output: Optimal policy 7* = argmin LCB"™ (7, s;)

1%(#) St 8(xt — m)L(m,s;) is the sample mean of the
cumulative cost incurred by policy w. Here, L(mw,s;) =
Zle vTC, (sf_Hl t) is the total discounted cost of executing

policy 7 starting from state s;, and §(-) is the discrete
Dirac delta function. The constant LCBJ;, < —v2lnn
ensures that any policy not yet selected by iteration n
will have an LCB value lower than that of any previously
selected policy, thereby guaranteeing it will be explored
with higher probability in subsequent iterations. Finally, the

2lnn
I (m)
the selection of under-explored policies. Under the standard
UCBI1 assumptions, the expected fraction of iterations on
which LCB selects a suboptimal policy is O(™); hence
the optimal policy is selected with asymptotic frequency 1
in expectation as n — o0.

The complete LCB-guided adaptive search algorithm is
shown in Algorithm 1. At each time step ¢, the algorithm
identifies the optimal policy * over the horizon {t+7[t}1_,.
The agent then executes the first control input of 7*, tran-
sitions to a new state, receives the ‘“real” measurement,
computes the posterior belief 5;11, and the algorithm is
re-applied at the next time step ¢t + 1. We should note
that intelligent pruning techniques, such as e-suboptimal
reductions [19], can be designed and integrated into the
proposed approach to focus on the most promising set of
control inputs at each time step thereby reducing the runtime
complexity.

Theorem 1 (Completeness): Let Il be the set of all
candidate policies in the LCB framework. Then for every
optimal policy ™ € I, there exists iteration n such that
w* is selected at least once by the algorithm.

Proof: By construction of the LCB algorithm, each
policy m € Ilr is initialized in a manner that guarantees it
is tried at least once. Thus, any policy that has never been
tried up to a certain point will have a higher LCB score
than those policies with a finite sample count, ensuring it
is selected at least once. Hence 7* is included among the
solutions eventually tried. [ ]

term

serves as an exploration bonus, encouraging
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Fig. 1. Simulation Setup: (a) Fire front true evolution, (b)(c) Wind speed parameters, (d) Risk map, and (e)(f) Fire spread rate parameters.

Theorem 2 (Asymptotic Convergence): Suppose there is
a unique optimal policy m whose expected cost is strictly
smaller than that of any other w € Ilp. Under LCB, the
fraction of times w* is selected converges to 1 as n — oo,
the per-iteration regret decays on the order of O (#) and
LCB converges to w* at that rate.

Proof: By Theorem 1, every policy in Il7 is selected
at least once under LCB. Moreover, LCB follows the same
selection rule as UCB1 for minimization problems, adapted
to entire control sequences, effectively treating each policy
as a bandit arm with a stationary cost distribution and stage
costs bounded in the range [0, 1]. Consequently, the classical
result on UCB1 [31] applies directly: the total number of
times any suboptimal policy is selected is O(In(n)). Hence
the fraction of times a suboptimal policy is chosen decreases
as O(#), which implies the expected regret shrinks at that

same rate. Thus, as n — oo, % — 0 and the fraction of
||

times the optimal policy 7* is selected converges to 1.

IV. EVALUATION

1) Simulation Setup: To evaluate the proposed approach,
we used the following setup: the environment £ C R? is
square, with side length 3 x 10® m in each dimension,
whereas its discrete representation £ consists of a 10 x
10 grid with equally sized cells, as shown in Fig. 1(a)
with gray dotted lines. The fire front state X; comprises
N = 20 fire front vertices (shown in Fig. 1(a)), initially
forming an ellipse centered at (x,y) (800, 900), i.e.,
the ignition point, with semi-major and semi-minor axes

of lengths 120 m and 60 m, respectively. Each of these
vertices evolves according to Eq. (2) with At = 60s. The
environmental conditions are as follows: wind direction 6,
wind speed w,, and fire spread rate r¢ due to fuel are defined
for each cell ¢ € €E. Specifically, the mean wind direction
(with North aligned with the y-axis) varies uniformly across
the x-axis from North to North-East to East, as illustrated
by the blue arrows in Fig. 1(a), following a von Mises
distribution with concentration parameter x = 500 in every
cell i.e., O(g) ~ VM(ug(c), Ko(e))- Subsequently, the wind
speed and fire spread rate are modeled as rectified Gaussian
distributions, i.e., ws(e) ~ Nr(kuw,(c), 75 (-)) and 7¢(€) ~
Ng (. (o) Jff( 6)). The superposition of these random vari-

ables over the grid for each ¢ € £ is shown in Fig. 1(b) and
Fig. 1(c) for the wind speed, and in Fig. 1(e) and Fig. 1(f)
for the fire spread rate, respectively. Finally, the risk R(¢)
associated with each cell, indicating the severity of fire in
that region is shown in Fig. 1(d). Consequently, the fire front
state X; evolves in continuous space and the environmental
parameters 6, w,, and r influencing each fire front vertex
are obtained by associating it with the nearest cell in the
discretized environment. The mobile agent (i.e., a drone)
evolves according to §; = §;—1 + dg [cosd(ﬁ),sind(ﬁ)]T,
and is controlled via the input 4; = [drAt, 1], where
dr € {3,6} m/s and ¥ € {0,90,180,270} deg. We assume
that the drone operates at a fixed altitude of 250 m and
is equipped with a wide-angle field-of-view camera with a
viewing angle of 120 deg, resulting in a circular sensing
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Performance Evaluation: (a) Agent trajectory (* and X indicate start and stop states respectively), and fire front state (i.e., estimated with solid

line, and true state with dotted line) obtained with Alg. 1, over 25-steps experiment, with myopic settings (i.e., horizon T'" = 1), (b) Same result with
non-myopic settings (i.e. horizon 7" = 3), (c) Estimation error for different configurations of the proposed approach and comparisons with baselines.

range with radius R, = 250tang(120/2) ~ 430 m. The
measurement noise is set to o, = 3.5 m, and we assume a
fixed intensity \i(z}) = 5, for all i € {1,..., N} and all
t. Finally, v = 0.99, nn,x varies depending on the horizon,
and the Bayes recursion in Eq. (10) is implemented as a SIR
particle filter with Ny = 2000 particles.

2) Results: Figure 1(a) illustrates the true evolution of the
fire front over a simulation period of Ty = 25 time steps,
influenced by the environmental conditions described above.
The fire-spread physics in this model support propagation in
all directions from the ignition point. As a result, even under
strong wind and fuel conditions, the upwind (back) perimeter
of the fire continues to advance, albeit at a slower rate, as
depicted. Furthermore, Fig. 1(a)-(c) illustrates how variations
in wind direction, wind speed, and spread rate influence
the propagation of the fire front, either by accelerating or
decelerating its advancement.

The output of Alg. 1 for this setup is shown in Fig. 2(a)
and Fig. 2(b), corresponding to horizon lengths of 7" = 1
(myopic) and T = 3 (non-myopic), respectively. The agent
is initialized at position (x,y) = (700,800), as indicated
by the green asterisk, running Alg. 1 in a rolling horizon
fashion, as discussed in Sec.III-C. The green line in the
figures is the agent’s final trajectory over 25 time steps,
resulting from the minimization of the expected cumulative
RWD over the planning horizon at each time step. The dotted
black lines show the true evolution of the fire front, while the
time color-coded lines represent the estimated front; ideally,
these two should align closely. As shown, the non-myopic
approach plans multiple steps ahead and achieves improved
performance compared to the myopic strategy, which plans
greedily. Specifically, the myopic behavior of the agent in
Fig. 2(a) prevents it from targeting the high-risk region in
the top-left corner of Fig. 1(d), which in this scenario is also
associated with high uncertainty, as illustrated in Figs. 1(c)
and 1(f). This limitation results in significant estimation
errors, as shown.

Subsequently, Fig. 2(c) illustrates the performance of
the proposed approach in terms of root mean square error

(RMSE) i.e., \/]E((Xt — Xt)2), between the estimated fire

front state Xt and the true state X; over 25 time steps, using
a uniform risk map. Specifically, we conducted 50 Monte
Carlo trials, randomly initializing both the fire front and the
agent’s position within the simulation environment described
earlier. The figure presents the average log,, RMSE per
time step per vertex over the 25-step simulation, comparing
six different approaches. The baseline, denoted as Inf. SR,
corresponds to an agent with infinite sensing range that
remains stationary and simply runs the particle filter. In this
case, the RMSE arises solely from measurement noise and
multiple detections, with no influence from control actions-
representing the best achievable performance under the given
settings. The Static approach involves a stationary agent with
a finite sensing range, while the Random approach uses an
agent also with finite sensing range that selects a random
control input at each time step. As expected, both approaches
result in significant errors. The figure also includes the
proposed method evaluated with different planning horizon
lengths, i.e., T' =1 (myopic), and non-myopic settings with
T = 3 and T = 5, and clearly demonstrates improved
performance as the planning horizon increases. Note that
the baseline is unattainable in this setting due to the agent’s
limited sensing capabilities.

V. CONCLUSION

This paper considers the problem of fire front moni-
toring under uncertainty by formulating it as a stochastic
optimal control problem that integrates sensing, estimation,
and control. A recursive Bayesian estimator was developed
for elliptical-growth fire front processes, and the control
problem was formulated as a finite-horizon Markov Decision
Process (MDP). An information-seeking control law was
then derived using a lower confidence bound (LCB)-based
adaptive search, enabling optimal risk-aware planning.

REFERENCES

[1] E. Kajita, “Notes from the field: Emergency department use during the
los angeles county wildfires, january 2025, MMWR. Morbidity and
Mortality Weekly Report, vol. 74, 2025.

[2] S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and
M. M. Polycarpou, “Towards automated 3d search planning for emer-
gency response missions,” Journal of Intelligent & Robotic Systems,
vol. 103, no. 1, p. 2, 2021.



[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

——, “A Cooperative Multiagent Probabilistic Framework for Search
and Track Missions,” IEEE Transactions on Control of Network
Systems, vol. 8, no. 2, pp. 847-858, 2020.

S. Papaioannou, S. Kim, C. Laoudias, P. Kolios, S. Kim,
T. Theocharides, C. Panayiotou, and M. Polycarpou, “Coordinated
crlb-based control for tracking multiple first responders in 3d envi-
ronments,” in 2020 International Conference on Unmanned Aircraft
Systems (ICUAS). 1EEE, 2020, pp. 1475-1484.

S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and
M. M. Polycarpou, “3d trajectory planning for uav-based search
missions: An integrated assessment and search planning approach,”
in 2021 International Conference on Unmanned Aircraft Systems
(ICUAS). 1EEE, 2021, pp. 517-526.

S. Papaioannou, P. Kolios, C. G. Panayiotou, and M. M. Polycarpou,
“Synergising human-like responses and machine intelligence for plan-
ning in disaster response,” in 2024 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2024, pp. 1-8.

S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and
M. M. Polycarpou, “Jointly-optimized searching and tracking with
random finite sets,” IEEE Transactions on Mobile Computing, vol. 19,
no. 10, pp. 2374-2391, 2019.

——, “Cooperative receding horizon 3d coverage control with a
team of networked aerial agents,” in 2023 62nd IEEE Conference on
Decision and Control (CDC). 1EEE, 2023, pp. 4399-4404.

——, “Integrated ray-tracing and coverage planning control using
reinforcement learning,” in 2022 IEEE 61st Conference on Decision
and Control (CDC). 1IEEE, 2022, pp. 7200-7207.

——, “Decentralized search and track with multiple autonomous
agents,” in 2019 IEEE 58th Conference on Decision and Control
(CDC). IEEE, 2019, pp. 909-915.

S. Papaioannou, C. Laoudias, P. Kolios, T. Theocharides, and C. G.
Panayiotou, “Joint estimation and control for multi-target passive mon-
itoring with an autonomous uav agent,” in 2023 31st Mediterranean
Conference on Control and Automation (MED). 1EEE, 2023, pp.
176-181.

S. Papaioannou, P. Kolios, and G. Ellinas, “Distributed estimation
and control for jamming an aerial target with multiple agents,” IEEE
Transactions on Mobile Computing, vol. 22, no. 12, pp. 7203-7217,
2022.

S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and
M. M. Polycarpou, “Rolling horizon coverage control with collabora-
tive autonomous agents,” Philosophical Transactions A, vol. 383, no.
2289, p. 20240146, 2025.

——, “Jointly-optimized trajectory generation and camera control for
3d coverage planning,” IEEE Transactions on Mobile Computing,
2025.

S. Papaioannou, P. Kolios, C. G. Panayiotou, and M. M. Polycarpou,
“Data-driven predictive planning and control for aerial 3d inspection
with back-face elimination,” in 2025 European Control Conference
(ECC), 2025, pp. 2160-2166.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

H. X. Pham, H. M. La, D. Feil-Seifer, and M. C. Deans, “A dis-
tributed control framework of multiple unmanned aerial vehicles for
dynamic wildfire tracking,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 50, no. 4, pp. 1537-1548, 2020.

P. Syjit, D. Kingston, and R. Beard, “Cooperative forest fire monitoring
using multiple UAVS,” in 2007 46th IEEE conference on decision and
control. 1EEE, 2007, pp. 4875-4880.

M. Lauri and R. Ritala, “Stochastic control for maximizing mutual
information in active sensing,” in IEEE International Conference on
Robotics and Automation, 2014, pp. 1-6.

N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Information
acquisition with sensing robots: Algorithms and error bounds,” in 2014
IEEE International conference on robotics and automation (ICRA).
IEEE, 2014, pp. 6447-6454.

A. O. Hero and D. Cochran, “Sensor management: Past, present, and
future,” IEEE Sensors Journal, vol. 11, no. 12, pp. 3064-3075, 2011.
P. Dames, M. Schwager, V. Kumar, and D. Rus, “A decentralized
control policy for adaptive information gathering in hazardous en-
vironments,” in 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC). 1EEE, 2012, pp. 2807-2813.

A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informa-
tive sensing using multiple robots,” Journal of Artificial Intelligence
Research, vol. 34, pp. 707-755, 2009.

G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic infor-
mation gathering algorithms,” The International Journal of Robotics

Research, vol. 33, no. 9, pp. 1271-1287, 2014.

Y. Kantaros, B. Schlotfeldt, N. Atanasov, and G. J. Pappas, “Sampling-
based planning for non-myopic multi-robot information gathering,”
Autonomous Robots, vol. 45, no. 7, pp. 1029-1046, 2021.

G. D. Richards, “An elliptical growth model of forest fire fronts and
its numerical solution,” International Journal for Numerical Methods
in Engineering, vol. 30, no. 6, pp. 1163-1179, 1990.

M. A. Finney, FARSITE, Fire Area Simulator-model development and
evaluation.  US Department of Agriculture, Forest Service, Rocky
Mountain Research Station, 1998, no. 4.

S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and
M. M. Polycarpou, “UAV-based receding horizon control for 3D
inspection planning,” in 2022 International Conference on Unmanned
Aircraft Systems (ICUAS), 2022, pp. 1121-1130.

——, “Unscented optimal control for 3d coverage planning with
an autonomous uav agent,” in 2023 International Conference on
Unmanned Aircraft Systems (ICUAS). 1EEE, 2023, pp. 703-712.

R. L. Streit and R. L. Streit, The Poisson point process. Springer,
2010.

R. Sutton and A. Barto, “Reinforcement learning: An introduction,”
IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 1054-1054,
1998.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, pp. 235-256,
2002.



