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Abstract— Automated inspection with Unmanned Aerial Sys-
tems (UASs) is a transformative capability set to revolutionize
various application domains. However, this task is inherently
complex, as it demands the seamless integration of perception,
planning, and control which existing approaches often treat sep-
arately. Moreover, it requires accurate long-horizon planning
to predict action sequences, in contrast to many current tech-
niques, which tend to be myopic. To overcome these limitations,
we propose a 3D inspection approach that unifies perception,
planning, and control within a single data-driven predictive
control framework. Unlike traditional methods that rely on
known UAS dynamic models, our approach requires only input-
output data, making it easily applicable to off-the-shelf black-
box UASs. Our method incorporates back-face elimination, a
visibility determination technique from 3D computer graphics,
directly into the control loop, thereby enabling the online
generation of accurate, long-horizon 3D inspection trajectories.

I. INTRODUCTION

Unmanned Aerial Systems (UAS) are increasingly em-
ployed across a range of application domains, such as
reconnaissance tasks [1], [2], search-and-rescue operations
[3]–[5], and inspection missions [6], [7]. Despite progress
in automation and aviation, fully autonomous UASs with
integrated planning and control remain in their infancy. Au-
tomated robotic inspection tasks require precise navigation,
efficient trajectory planning, and accurate path execution.
Long-horizon planning is critical for predicting future actions
and optimizing cumulative rewards. However, many existing
approaches rely on short-horizon planning in simplified 2D
environments, neglecting the complexity of 3D settings [8],
[9]. Conventional methods assume known UAS dynamics,
either through explicit modeling [10], [11] or learning-based
approaches [12], [13]. Model-based techniques often lead to
intractable non-linear optimization problems, while learning-
based methods demand large datasets and retraining when
applied to new platforms. Recent efforts favor data-driven
approaches [14], [15], which leverage past input-output data
without requiring explicit models.

Moreover, automated inspection is inherently a challeng-
ing task because it requires tight integration of perception,
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planning, control, whereas in many other planning problems
these tasks are often handled separately [16]–[20]. For in-
stance, [16], [17] address power-line inspection and trajec-
tory following, respectively, assuming pre-defined reference
trajectories, effectively treating the planning problem as
solved. In [18], planning is decoupled into path searching and
motion control, while the works in [19], [20] treat perception,
planning, and control as separate modules for UAV naviga-
tion and coverage. In contrast, automated inspection demands
the joint solution of planning and control under perception-
aware constraints. The UAS must dynamically determine
the inspection sequence, timing, and reference trajectory
to cover multiple surface points, significantly increasing
problem complexity.

To address these challenges, this work formulates the 3D
inspection task as an optimization problem that maximizes
cumulative reward over a receding planning horizon, in-
tegrating perception, planning, and control within a data-
driven predictive control framework. The proposed method
jointly optimizes the UAS motion control inputs and camera
viewpoints, incorporating back-face elimination, a technique
from 3D computer graphics used for visibility determination,
directly into the control loop. This enables the generation of
accurate, long-horizon 3D inspection trajectories.

The rest of the paper is organized as follows: Section II
reviews related work. Section III presents the problem
formulation. Section IV describes the proposed approach,
while Section V provides the evaluation. Finally, Section VI
concludes the paper.

II. RELATED WORK

Most existing inspection planning approaches primarily
address 2D environments, such as terrain coverage [21].
Visibility-aware methods with fixed sensors, as presented
in [22], rely on myopic strategies, limiting their capacity
for long-horizon planning. In 3D environments, [23] formu-
lates the inspection task as a sampling-based path planning
problem, enabling online receding horizon planning through
geometric random trees. The method in [24] decomposes the
problem into view and motion planning, solved heuristically
via genetic algorithms. A finite element method (FEM)-based
approach is introduced in [25], where offline inspection paths
are generated using potential and distance fields. Particle
swarm optimization (PSO) is employed in [26] and [27], with
the latter framing the problem as discrete graph optimization.
Recent works [28], [29] formulate the planning problem
as a traveling salesman problem (TSP), solved using meta-
heuristic techniques. Receding horizon control has also been



applied to 3D inspection planning in [30], [31], however,
these methods are constrained to cuboid-like structures and
do not incorporate visibility considerations. Finally, the ap-
proach in [6] is limited to the generation of myopic plans.

III. PROBLEM FORMULATION

A. UAS Dynamical Model

Without loss of generality, we assume that the dynamical
behavior B of a UAS agent can be described by a linear
time-invariant (LTI) system of the following form [32]:

B(A,B,C,D) :=

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(1)

where B(A,B,C,D) is a minimal input/output/state rep-
resentation of the system, with A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, and D ∈ Rp×m unknown. The state, control
input, and output of the system at time-step t ∈ N are given
respectively by x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp.

Definition 1: The signal u ∈ Rm×T of length T ∈ N+

with u(t) ∈ Rm, t ∈ {1, . . . , T} is persistently exciting of
order N ∈ N+ ≤ T if the Hankel matrix:

HN (u) :=


u(1) u(2) . . . u(T −N + 1)
u(2) u(3) . . . u(T −N + 2)

...
...

. . .
...

u(N) u(N + 1) . . . u(T )

 ,

(2)
has full rank, i.e., rank(HN (u)) = mN .

Lemma 1 (Fundamental Lemma [14]): Consider a con-
trollable LTI system B(A,B,C,D) described by Eq. (1) and
assume that the input sequence (i.e., control input samples)
ud ∈ Rm×T is persistently exciting of order N + n, and
yd ∈ Rp×T is the corresponding output (i.e., collected output
data samples). Then, the input-output pair of sequences u
and y of length N is a valid input-output trajectory of
B(A,B,C,D) if and only if there exists g ∈ RT−N+1 such
that: [

HN (ud)
HN (yd)

]
g =

[
u
y

]
. (3)

Subsequently, a valid input-output trajectory (u, y) of the
system of length N can be constructed by collecting a
sufficiently rich and long (i.e., persistently exciting) input-
output sequence (ud, yd) of length T such that T ≥ (m +
1)(N+n)−1. In this case, the subspace consisting of all valid
input and output trajectories of length N of the system is
the same as the range space of the Hankel matrices HN (ud)
and HN (yd) respectively. For extensions to nonlinear and
stochastic systems, we refer readers to [33].

B. UAS Camera Model

The UAS carries a gimballed camera module with a finite
field of view (FOV), which is utilized for performing auto-
mated inspection missions. The camera FOV is represented
as a convex polyhedron i.e., a regular right pyramid with
square base, characterized by its vertices VFOV ∈ R3×5,

where VFOV(i) ∈ R3, i ∈ {1, . . . , 5}. VFOV is adjusted in
three-dimensional space by instructing the gimbal controller
to perform two sequential basic rotations: first, a rotation by
an angle θy ∈ Θy around the y-axis, and then a rotation by
an angle θz ∈ Θz around the z-axis as:

Vθz,θy (i) = Rz(θz)Ry(θy)VFOV(i), i ∈ {1, . . . , 5}, (4)

where, with slight abuse of notation, Vθz,θy is the matrix
containing the rotated vertices of the FOV corresponding to
the angles (θz, θy), which are used here as indices. Ry(θ) and
Rz(θ) are the basic 3×3 rotation matrices that rotate vectors
by an angle θ around the y-axis and z-axis, respectively.

The convex hull of Vθz,θy is defined as Cθz,θy = {x ∈
R3|Γθz,θyx ≤ ∆θz,θy}, where Γθz,θy is a 5×3 matrix whose
rows are the outward normal vectors Γ⊤

θz,θy
(i) ∈ R3, i ∈

{1, . . . , 5} on the pyramid FOV facets formed by the vertices
in Vθz,θy and ∆θz,θy is a 5 × 1 constant vector containing
the offset ∆θz,θy (i) of each facet i from the origin. Finally,
the set of points Cθz,θy (t) that can be observed through the
FOV Vθz,θy along the agent’s trajectory described by Eq. (1)
at time-step t is given by:

Cθz,θy (t) = {x ∈ R3|Γθz,θyx ≤ ∆θz,θy +Γθz,θyhy(t)}, (5)

where the output of the system hy(t) ∈ R3 denotes the
UAS position (3D Cartesian coordinates) at time-step t,
i.e., the matrix h extracts the spatial coordinates from the
measurement vector y(t).

C. Problem Statement

Consider a known structure of interest, denoted by S ⊂
R3, whose surface is represented by a mesh ∆S composed
of triangular facets. Let ∆Ŝ = {s1, . . . , s|∆Ŝ|} ⊆ ∆S be a
subset of facets. Each facet si ∈ ∆Ŝ is defined by three
vertices, νsi1, νsi2, and νsi3 ∈ R3. The centroid of each
facet is given by s̄i = mean(νsi1, νs

i
2, νs

i
3), and each facet

is associated with an outward normal vector, denoted as s⃗i,
and a reward value, ri which may vary across facets.

The objective of the UAS agent is to design and execute
inspection trajectories over a rolling planning horizon of
N time-steps, aiming to maximize the cumulative reward
obtained by inspecting the facets si ∈ ∆Ŝ with its camera,
and to conclude the mission once all facets in ∆Ŝ have been
inspected.

Let γi denote a decision variable indicating whether facet
si has been inspected by the end of a planning horizon of
length N time-steps. The agent’s objective can be formulated
as: max

∑|∆Ŝ|
i=1 riγi(N). In the scenario where ri = r, ∀i ∈

{1, . . . , |∆Ŝ|} the objective simplifies to maximizing the
number of facets inspected within the planning horizon. On
the other hand, by assigning different reward values to the
facets, we can design trajectories that prioritize different parts
of the structure to be inspected. However, the objective above
does not capture the requirement to inspect all facets in
∆Ŝ. To accomplish this, the agent must track which facets
have been inspected, ensuring mission progress and avoiding
redundant work. Additionally, the agent must determine in



an on-line fashion the visibility of each facet based on its
predicted state, enabling the planning of trajectories that
ensure the inspection of visible areas on the structure’s
surface.

In summary, the agent is required to inspect all facets,
collecting the reward from each facet only once and only if
the facet is visible. Next, we discuss how inspection plan-
ning dynamics and perception-aware constraints via back-
face elimination have been integrated within a data-driven
predictive control framework to tackle this problem.

IV. PLANNING AND CONTROL FOR 3D INSPECTION

A. Inspection Planning Dynamics

As previously mentioned, the task is to inspect |∆Ŝ| facets
on the surface of S. The inspection value of each facet
si over the planning horizon is represented by the binary
decision variable γi(t+τ |t) ∈ {0, 1}, for τ ∈ {0, . . . , N−1}.
Here, γi(t+τ |t) = 1 indicates that facet si is predicted to be
inspected at time-step t + τ of the planning horizon, based
on the plan computed at time-step t, while γi(t + τ |t) =
0 implies that the facet has not yet been scheduled for
inspection as of time-step t+ τ .

To enable the agent to design long-horizon inspection
trajectories, anticipate which facets can be inspected at
future time-steps while integrating past information (i.e.,
facets already inspected), we design the following inspection
planning dynamics:

ξi(t+ τ + 1|t)− ξi(t+ τ |t) = ϖi(τ) (6a)
ϖi(τ) ≤ γi(t+ τ |t) + Ξi(t) (6b)
ξi(t|t) = ξi(t|t− 1) (6c)

where the variable ξi(t + τ + 1|t) ∈ [0, 1] captures the
discrete-time dynamics of the inspection value for each facet
via the difference equation (6a), initialized from the previous
plan, and ϖi(τ) ∈ [0, 1] is an auxiliary decision variable
which integrates the inspection value γi(t + τ |t) during
the current planning horizon with a memory component
Ξi(t) ∈ [0, 1]. Specifically, Ξi(t) = 1 only if there exists a
time-step t′ < t at which the facet si has been inspected.
Subsequently, ξi(t + τ + 1|t) captures the evolution of
inspection value for each facet based on current and past
information up to time-step t. Based on this, the agent’s
objective can be re-formulated as: maxγ

∑|∆Ŝ|
i=1 riξi(t+N |t)

where γ ∈ {0, 1}|∆Ŝ|×N is the collection of binary decision
variables γi(t+τ |t) ∀i,∀τ . Observe that the inspection value
of some facet i can be activated either through Ξi(t) or via
γi(t + τ |t). Consequently, if a facet i has been inspected
at some time-step t′ < t in the past (i.e., Ξi(t) = 1), then
turning on γi(t + τ | t) (i.e., planning to inspect it again
at some future time step t + τ | t) does not improve the
objective. Therefore, in such cases, the agent is encouraged
to design a plan for inspecting some other facet j ̸= i that
has not yet been inspected, which will improve the objective.
Next, we discuss the design of perception-aware constraints
based on back-face elimination, enabling the agent to identify
visible facets along its path and plan accurate long-horizon

inspection strategies. Additionally, we explain how γ is
integrated with perception-aware constraints within a data-
driven predictive control framework to guide the agent in
maximizing the cumulative reward.

B. Back-face Elimination

Back-face elimination [34] is an optimization technique in
3D computer graphics that enhances rendering performance
by removing polygons (typically triangles) oriented away
from the camera. Since these back-facing polygons are not
visible to the viewer, discarding them reduces the number
of polygons that need to be processed and rendered, thereby
conserving computational resources. This method determines
a polygon’s visibility by assessing the orientation of its
normal vector relative to the viewing direction. In this work,
this methodology is utilized to integrate perception-aware
constraints to 3D inspection planning aimed at determin-
ing facet visibility relative to the agent’s predicted state,
thereby enabling the design of accurate inspection plans.
More specifically, a facet is considered visible if its normal
vector is oriented opposite to the camera’s viewing direction
(i.e., the camera is facing the facet). Additionally, the facet’s
centroid must lie within the convex hull of the camera’s field
of view, a criterion that can be extended to include all vertices
of the facet. Let the agent’s camera viewing direction at a
given orientation and position be denoted by c⃗θz,θy (t+τ |t) =
coθz,θy −hy(t+ τ |t), for τ ∈ {0, . . . , N −1}, where coθz,θy =
mean(Vθz,θy (1), . . . , Vθz,θy (4)) is the centroid of the FOV’s
base. For a given facet si, i ∈ {1, . . . , |∆Ŝ|} with an outward
normal vector s⃗i and centroid s̄i, we design the following
perception-aware constraints to determine visibility:

dot
(
c⃗θz,θy (t+ τ |t), s⃗i

)
≤M

(
1− bi,θz,θy (t+ τ |t)

)
(7a)

dot
(
c⃗θz,θy (t+ τ |t), s⃗i

)
> −Mbi,θz,θy (t+ τ |t) (7b)

ψi,θz,θy (t+ τ |t) = 1 =⇒ s̄i ∈ Cθz,θy (t+ τ |t) (7c)

where dot(a, b) is the dot-product between vectors a and
b, M is a large positive constant, and bi,θz,θy (t + τ |t) ∈
{0, 1}, ψi,θz,θy (t + τ |t) ∈ {0, 1} are binary decision vari-
ables indicating whether the camera faces the facet si and
whether its centroid s̄i belongs to the convex hull of the
camera’s FOV, respectively. More specifically, if bi,θz,θy (t+
τ |t) = 1, then from Eq. (7a)-(7b), the dot product be-
tween c⃗θz,θy (t + τ |t) and s⃗i is negative, and restricted to
the range (−M, 0], indicating visibility, where the camera
viewing direction faces the facet’s normal vector. On the
other hand, if the dot product between these two vectors
is positive, it indicates that they are not pointing toward
each other, therefore, the camera does not face the facet.
Consequently, if dot

(
c⃗θz,θy (t+ τ |t), s⃗i

)
> 0, the decision

variable bi,θz,θy (t+ τ |t) is forced to become zero to satisfy
the constraints within the interval (0,M ]. Finally, the binary
decision variable ψi,θz,θy (t + τ |t) is activated only if the
centroid s̄i resides within the convex hull of the camera’s
FOV at time-step t + τ |t of the planning horizon as shown
in (7c). We note here that the first two constraints above can
be simplified since the camera direction vector c⃗θz,θy (t +



τ |t) remains unchanged under translation. Therefore, the
constraints in Eq. (7a)-(7b) are time-invariant, allowing the
time index to be dropped from all variables (i.e., the viewing
direction vector can be computed by rotating the camera at
the origin).

C. Data-Driven Predictive Inspection Control

Given our UAS agent represented by B(A,B,C,D) as
described in Sec. III-A, and based on Lemma 1, we collect
a sequence of input ud ∈ Rm×T and output yd ∈ Rp×T data
of length T ≥ (m + 1)(L + n) − 1, which are persistently
exciting of order L + n, with L ∈ N+ = K + N . Here,
K ≥ ℓ denotes the length of the initialization horizon (i.e., a
window of historical input-output data) used to capture the
initial state of the system at the start of the predictive control
horizon, ensuring that predictions for future actions are
consistent with the system’s past behavior, i.e., the executed
trajectory. Subsequently, ℓ ∈ N+ denotes the smallest integer
such that the rank of the observability matrix Oℓ(A,C) =[
C⊤, (CA)⊤, · · · , (CAℓ−1)⊤

]⊤ ∈ Rpℓ×n is equal to n, i.e.,
rank(Oℓ(A,C)) = n [14]. Finally, as already discussed,
N is the planning horizon, defining the length of time-
steps into the future to predict the system. Subsequently,
the system’s dynamical behavior is captured through the two
Hankel matrices: UH = HL(u

d), and YH = HL(y
d), where

UH is divided into two parts (i.e., Up and Uf ), used to capture
the past and future behavior of the system, respectively. Here,
Up ∈ RmK×T−L+1 and Uf ∈ RmN×T−L+1. The same
procedure applies to the Hankel matrix YH for the output
data. The proposed controller is formulated as a quadratic
mixed-integer optimization problem (MIQP) shown in Prob-
lem (P1) via Eq. (8a)-(8u). This controller, is initialized
based on the past input-output sequence (uo, yo) of length K,
which effectively sets the underlying initial states from which
the predicted trajectory (u, y) will evolve. This initialization
procedure is shown in Eq. (8b)-(8e), where uo ∈ Rm×K

and yo ∈ Rp×K , so that uo(t) ∈ Rm and yo(t) ∈ Rp.
At each time-step t, the sequence pair (uo, yo) tracks the
executed trajectory, updating its values by shifting those
from the previous time-step one position to the left (i.e., Eq.
(8b), (8d)), and then incorporating the applied control input
u(t− 1|t− 1) and observed output y(t− 1|t− 1) from the
previous time-step t− 1 (i.e., Eq. (8c), (8e)).

The constraints shown in Eq. (8f)-(8i), construct the
future trajectory of the agent by identifying a consistent
future input-output sequence (u, y) of length N aligned
with the past data (uo, yo) of length K, via the decision
variable g ∈ RT−L+1. The notation Up(κ) in Eq. (8f)
represents the κth block row of Up ∈ RmK×T−L+1, so
that Up(κ) ∈ Rm×T−L+1. Subsequently, the dot product
operation dot(Up(κ), g) = uo(t−κ|t) is performed between
all m rows of Up(κ) and g, resulting in an m-dimensional
signal, which we equate to uo(t − κ|t). The same notation
is applied to the remaining constraints in Eq. (8g)-(8i). The
predicted control inputs and system outputs over the rolling
planning horizon τ ∈ {0, . . . , N − 1} are represented by the
decision variables u(t+ τ |t) and y(t+ τ |t).

(P1) Predictive Planning and Control
min
γ,g,u

J (8a)

subject to:
- Initialize past behavior:

uo(t− κ|t) = uo(t− κ+ 1|t− 1), κ ∈ {1, ..,K − 1} (8b)
uo(t−K|t) = u(t− 1|t− 1) (8c)
yo(t− κ|t) = yo(t− κ+ 1|t− 1), κ ∈ {1, ..,K − 1} (8d)
yo(t−K|t) = y(t− 1|t− 1) (8e)
- Construct future behavior:

dot (Up(κ), g) = uo(t− κ|t), ∀κ (8f)
dot (Yp(κ), g) = yo(t− κ|t), ∀κ (8g)
u(t+ τ |t) = dot (Uf (τ + 1), g) , ∀τ (8h)
y(t+ τ |t) = dot (Yf (τ + 1), g) , ∀τ (8i)
- Inspection planning dynamics:

ξi(t+ τ + 1|t) = ξi(t+ τ |t) +ϖi(τ), ∀τ, i (8j)
ξi(t|t) = ξi(t|t− 1), ∀i (8k)
ϖi(τ) ≤ γi(t+ τ |t) + Ξi(t), ∀i (8l)
- Perception-aware constraints:

dot (c⃗ϕ, s⃗i) ≤M (1− bi,ϕ) , ∀i, ϕ (8m)
dot (c⃗ϕ, s⃗i) > −Mbi,ϕ, ∀i, ϕ (8n)
ψi,ϕ(t+ τ |t) = 1 =⇒

s̄i ∈ Cϕ(t+ τ |t), ∀i, ϕ (8o)
- Constraint Integration:

γi(t+ τ |t) ≤ [ bi,ϕ × ψi,ϕ(t+ τ |t) ]×
ωϕ(t+ τ |t), ∀τ, i, ϕ (8p)

- Collision avoidance:

y(t+ τ |t) /∈ C∆S ∀τ (8q)
- Variable definitions:

τ ∈ {0, .., N − 1}, κ ∈ {1, ..,K}, i ∈ {1, .., |∆Ŝ|} (8r)
ϕ ∈ {1, .., |{Θz ×Θy}|}, ωϕ(t+ τ |t) ∈ {0, 1} (8s)
γi(t+ τ |t), ψi,ϕ(t+ τ |t), bi,ϕ ∈ {0, 1}, (8t)

ξi(t+ τ + 1|t),Ξi(t), ϖi(τ) ∈ [0, 1], g ∈ RT−L+1 (8u)

The constraints in Eq. (8j)-(8l) capture the inspection
planning dynamics discussed in Sec. IV-A. These constraints
are designed to minimize redundant work by (a) tracking
already inspected facets through the memory component
Ξi(t) and (b) preventing the generation of plans that inspect
the same facet more than once within the planning horizon.

Next, the constraints in Eq. (8m)-(8n) identify the visible
facets through back-face elimination as discussed in Sec. IV-
B, where with slight change of notation ϕ ∈ {1, . . . , |{Θz ×
Θy}|} serves as index pointing to a specific FOV orientation
{θz, θy} ∈ {Θz × Θy}. The viewing direction c⃗ϕ,∀ϕ, is
precomputed for all camera FOV rotations since it is invariant
under translation. Therefore, the binary decision variable
bi,ϕ indicates whether facet i can be observed through the



camera orientation ϕ, based on the facet’s normal vector and
the camera’s viewing direction. To determine visibility, this
result must be combined with the binary decision variable
ψi,ϕ(t + τ |t), which indicates whether the centroid of facet
si resides within the convex hull of the FOV with orientation
ϕ at time step t + τ |t. This is achieved with the constraint
shown in Eq. (8o) as follows: The convex hull of the agent’s
ϕth camera FOV at time step t+τ |t is given, as discussed in
Sec. III-B, by Cϕ(t+ τ |t) = {x ∈ R3 | Γϕx ≤ ∆′

ϕ(t+ τ |t)},
where ∆′

ϕ(t + τ |t) = ∆ϕ + Γϕhy(t + τ |t) and hy(t + τ |t)
indicates the predicted output of the system, i.e., the agent’s
position inside the planning horizon. The binary decision
variable ψi,ϕ(t+ τ |t) can then be derived from the auxiliary
binary variable ψ′

j,i,ϕ(τ) via the constraint:

dot (Γϕ(j), s̄i) +Mψ′
j,i,ϕ(τ)−∆ϕ(j)ψ

′
j,i,ϕ(τ) −

dot (Γϕ(j), hy(τ))ψ
′
j,i,ϕ(τ) ≤M, (9)

where for brevity t+ τ |t is abbreviated as τ , j ∈ {1, . . . , 5}
denotes the FOV faces, M is a large positive constant,
Γϕ(j) denotes the jth row of the matrix Γϕ, ∆ϕ(j) is the
jth element of the column vector ∆ϕ, and ψ′

j,i,ϕ(τ) ∈
{0, 1}. ψ′

j,i,ϕ(τ) will take the value of 1 if the inequality
dot(Γϕ(j), s̄i) ≤ ∆ϕ(j) + dot(Γϕ(j), hy(τ)) holds for some
j, ϕ, i, and τ ; otherwise, it will take the value of 0. Subse-
quently, s̄i ∈ Cϕ(t + τ |t) implies that ψ′

j,i,ϕ(τ) = 1,∀j.
This can be implemented with the following constraint:
5ψi,ϕ(τ) ≤

∑5
j=1 ψ

′
j,i,ϕ(τ),∀ϕ, i, τ , where the controllable

binary decision variable ψi,ϕ(τ), when driven to 1 forces
ψ′
j,i,ϕ(τ) = 1,∀j in order to satisfy the constraint. In essence,

by setting ψi,ϕ(t+ τ |t) to 1, we are effectively guiding the
agent’s ϕth camera FOV through the output hy(t + τ |t) at
time step t+ τ |t to cover the centroid of facet si.

Next, the perception-aware constraints are given in Eq.
(8p) via the decision variable γi(t + τ |t), which indicates
that there exists a camera FOV orientation such that facet si
is visible and can be inspected via the agent’s output at time-
step t+ τ |t. This is accomplished by multiplying the binary
decision variables bi,ϕ (back-face elimination), ψi,ϕ(t+ τ |t)
(centroid inside the FOV), and ωϕ(t + τ |t) ∈ {0, 1}. In
particular ωϕ(t+ τ |t) ensures that, at each time-step within
the planning horizon, the camera orientation is restricted to
one active configuration, i.e.,

∑
ϕ ωϕ(t+ τ |t) = 1,∀τ . This

multiplication, can easily be implemented in modern mixed-
integer solvers using the logical AND operator. To ensure the
UAS agent avoids collision with the structure S , we enforce
the constraint in Eq. (8q). The convex hull of S is defined
by the intersection of |∆S| half-spaces. Each half-space j,
for j = {1, . . . , |∆S|}, corresponds to a plane described by
the equation dot(α(j), x) = β(j) with x ∈ R3, effectively
partitioning the 3D space into two regions. To prevent a
collision with S, the following conditions must be satisfied
for all time-steps τ and all planes j:

dot (α(j), hy(t+ τ |t)) > β(j)−Moj(t+ τ |t), ∀τ, j, (10)

where M is a sufficiently large positive constant, and oj(t+
τ |t) ∈ {0, 1} are binary variables. When oj(t+ τ |t) = 1, it

indicates that the inequality dot(α(j), hy(t + τ |t)) ≤ β(j)
holds at time-step t+τ |t, suggesting potential collision along
plane j. The agent is considered to be in collision with S
at time-step t + τ |t - meaning it resides within the convex
hull defined by ∆S if dot(α(j), hy(t + τ |t)) ≤ β(j) holds
for all j. Subsequently, the constraint

∑|∆S|
j=1 oj(t + τ |t) +

1 ≤ |∆S|, ∀τ ensures that the total number of activated
oj(t+τ |t) variables at any given time-step is less than |∆S|,
thereby preventing the agent from simultaneously satisfying
all the inequalities that define the convex hull of S and
thus avoiding collision. Finally, the cost function J to be
minimized over γ, g and u i.e., min

γ,g,u
J , is given by:

J = w1

N−1∑
τ=1

||∆u(t+ τ |t)||22 − w2

|∆Ŝ|∑
i=1

riξi(t+N |t) (11)

where g ∈ RT−L+1, γ := γi(t + τ |t),∀i, τ , u := u(t +
τ |t),∀τ , and ∆u(t + τ |t) = u(t + τ |t) − u(t + τ −
1|t), τ ∈ {1, . . . , N − 1}. The parameters w1 and w2 are
tuning weights used to balance control effort and inspection
performance, respectively.

V. EVALUATION

A. Simulation Setup

To evaluate our approach, we simulated a quadrotor
UAS agent with a 12-dimensional state vector x(t) =
[x1, ẋ1, x2, ẋ2, x3, ẋ3, x4, ẋ4, x5, ẋ5, x6, ẋ6]

⊤, and full state
measurement y(t). The state vector includes both 3D Carte-
sian position and velocity components, (x1, ẋ1), (x2, ẋ2),
(x3, ẋ3), corresponding to the x-, y-, and z-axes, as well
as angular positions and velocities, (x4, ẋ4), (x5, ẋ5), and
(x6, ẋ6), representing roll, pitch, and yaw, respectively.

Quad-rotor control u(t) = [u1, u2, u3, u4]
⊤ is achieved

by managing four independent inputs, where the lift force
u1 ∈ [−3, 3]N along the z-axis controls vertical motion.
Additionally, torques u2, u3, and u4 are applied around the
x-, y-, and z-axes, respectively, to control roll, pitch, and
yaw, with u2, u3, u4 ∈ [−2, 2]Nm.

The dynamical behavior of the UAS is linearized around
the hover state and is described by B(A,B,C,D) with
A ∈ R12×12, B ∈ R12×4, C = I12 (identity matrix), and
D = 0. The non-zero elements of A and B are as follows:
A(1, 2) = Ts, A(2, 2) = 1, A(2, 9) = grTs, A(3, 4) = Ts,
A(4, 4) = 1, A(4, 7) = −grTs, A(5, 6) = Ts, A(6, 6) = 1,
A(7, 8) = Ts, A(8, 8) = 1, A(9, 10) = Ts, A(10, 10) = 1,
A(11, 12) = Ts, A(12, 12) = 1, and B(6, 1) = Ts

ma ,
B(8, 2) = lTs

Ix
, B(10, 3) = lTs

Iy
, B(12, 4) = Ts

Iz
.

The parameters Ts = 0.7 s, gr = 9.81m/s2, ma = 1.2 kg,
l = 0.21m, and Ix = Iy = Iz = 0.004N · s2/rad denote the
sampling time, gravity, UAV mass, quadrotor arm length,
and moments of inertia about the x−, y−, and z−axes,
respectively. The camera FOV at the origin is given by

VFOV =

[
−W/2 W/2 W/2 −W/2 0
W/2 W/2 −W/2 −W/2 0
H H H H 0

]
with W = 5.5m and

H = 6.5m. The camera can perform |Θz| = |Θy| = 8
equally spaced rotations around the y- and z-axes. The
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Fig. 1. The figure provides an example to illustrate the proposed approach of data-driven predictive planning and control for 3D inspection.

parameters w1 and w2 in Eq. (11) are set to 5E − 3
and 15 respectively, and the controller in Problem (P1) is
implemented utilizing the Gurobi MIQP solver.
B. Results

Figure 1 illustrates a 3D inspection scenario executed
using the proposed controller from Problem (P1), configured
with parameters K = 1, N = 8, and a collected input-output
data sequence of length T = (m+1)(L+n)−1 = 104, where
L = K+N . The structure S to be inspected is represented as
a mesh ∆S (|∆S| = 1008) shown in Fig. 1(a), with the facets
to be inspected ∆Ŝ shown in gray color, randomly sampled
from ∆S, with cardinality |∆Ŝ| = 15, and assigned rewards
ri, i ∈ {1, . . . , 15} randomly sampled within the interval
[1, 20]. The agent is initialized at the positional state of
(x, y, z) = (10, 10, 1), marked with ∗ as shown in Fig. 1(b).
The evolution of the inspection mission is shown at different
time-steps in Fig. 1(b)-1(f), showcasing the predicted and
executed plan (i.e., trajectory and camera FOV) in red and
green, respectively. As shown in the figure, the approach
simultaneously solves planning and control under perception-
aware constraints. The agent determines in an online manner
the sequence of facets to inspect next, by optimizing the
cumulative reward while considering visibility, within the
planning horizon, and generates the optimal trajectory and
camera states accordingly. The mission concludes after 60
time-steps, once all facets have been inspected.

Finally, the next experiment evaluates the significance
of back-face elimination (BFE) in identifying visible facets
for the inspection task. A Monte Carlo simulation with 50
trials was conducted, randomly initializing a UAS agent in
the simulated environment shown in Fig. 1, and running
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Fig. 2. The effect of back-face elimination (BFE) on the performance of
3D inspection planning. Average percentage of visible inspected facets at
the end of the mission as a function of the FOV size.

the proposed controller with and without BFE constraints
(i.e., by setting bi,ϕ = 1,∀i, ϕ in Eq. (8p)). The facets
for inspection were randomly selected from ∆S, with their
quantity randomly sampled from the range [10, 30]. Ground
truth was obtained through ray-tracing [35]. The findings,
illustrated in Fig. 2, reveal that with BFE enabled, the con-
troller successfully inspects all facets regardless of FOV size,
without performance loss. However, disabling BFE results
in a performance drop as FOV size increases. This is due
to larger FOVs including facets that are within the convex
hull of the FOV but not truly visible. Small FOVs require
the agent to move closer to the structure, naturally aligning
with visible facets. In contrast, larger FOVs may cover more
facets in the structure, even if some are not actually visible.
Hence, the incorporation of back-face elimination (BFE)
enables perception-aware guidance, thereby enhancing the
effectiveness of the inspection process.



VI. CONCLUSION

This paper presents a novel UAS-based, data-driven con-
trol approach to 3D inspection planning. By integrating
perception, planning, and control within a unified predic-
tive control framework, the method dynamically generates
optimal inspection trajectories guided by a perception-aware
objective aimed at maximizing inspection performance. The
inspection planning task is formulated as an optimization
problem that maximizes cumulative rewards over a receding
planning horizon, incorporating back-face elimination into
the control loop for online visibility determination. Fur-
thermore, this work explores the application of data-driven
control to complex optimization problems beyond traditional
regulation and tracking tasks. Future work will focus on
deploying the proposed approach in real-world scenarios
using off-the-shelf UAS platforms.
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