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Abstract— In this work we introduce a novel adaptive
anomaly detection framework specifically designed for mon-
itoring sequential random finite set (RFS) observations. Our
approach effectively distinguishes between in-control data (nor-
mal) and out-of-control data (anomalies) by detecting deviations
from the expected statistical behavior of the process. The
primary contributions of this study include the development
of an innovative RFS-based framework that not only learns
the normal behavior of the data-generating process online
but also dynamically adapts to behavioral shifts to accurately
identify abnormal point patterns. To achieve this, we introduce
a new class of RFS-based posterior distributions, named Power
Discounting Posteriors (PD), which facilitate adaptation to
systematic changes in data while enabling anomaly detection
of point pattern data through a novel predictive posterior
density function. The effectiveness of the proposed approach
is demonstrated by extensive qualitative and quantitative sim-
ulation experiments.

I. INTRODUCTION

Anomaly detection comprises techniques aimed at moni-
toring various processes, such as manufacturing, finance, and
cybersecurity, to identify deviations from expected behav-
ior that may indicate problems or inefficiencies. Its broad
applicability spans fraud detection (e.g., credit cards, in-
surance, healthcare), cybersecurity, and fault diagnosis in
critical systems, due to the valuable insights anomalies
often provide. For instance, unusual network traffic may
signal security breaches [1], abnormal medical findings may
indicate malignancy [2], and atypical transactions may reveal
financial fraud [3]. Despite decades of research and maturity
in some domains, detecting anomalies remains challenging,
particularly in stochastic point pattern data [4], where both
the number and nature of observations are random. Most ex-
isting statistical [5], [6] and data-driven [7] methods assume
fixed-size input structures (e.g., vectors, matrices), limiting
their effectiveness in such settings.

Point patterns, however, consist of random sets of ran-
dom vectors, with both spatial configuration and cardinality
varying across instances. This variability renders traditional
methods largely ineffective. To address this, Random Finite
Set (RFS) theory [8], [9] offers a robust framework for
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handling random set-valued data and parameters. RFS is
particularly suited for inference tasks involving an unknown
and varying number of observations, with applications in
state estimation [10], [11], [12], tracking [13], [14], [15],
robotics [16], [17], [18], and surveillance [19], [20], [21].

However, its application in anomaly detection has been
largely overlooked to date. More related to our work are
the works in [22], [23], [24] and [25]. Specifically, the
authors in [22] study the problem of model-based learning
for classification, anomaly detection, and clustering of point
pattern data. The approaches proposed in [22], however, are
offline (i.e., they are not designed for observations obtained
sequentially), and require a two-stage procedure: in the first
stage, a training/calibration process is undertaken to learn
the model’s parameters, and only then can the respective task
(i.e., anomaly detection) be performed. Similarly, offline two-
stage RFS-based anomaly detection algorithms are proposed
in [23] for hazard detection at construction sites, and in
[24] for detecting anomalies in industrial manufacturing.
The problem of anomaly detection with RFS observations
is also investigated in [25], where the authors propose a
methodology for detecting defects in industrial settings using
RFS energy-based models. However, this methodology is not
adaptive; the RFS energy-based model is known a priori, and
its parameters, learned using offline calibration data, remain
fixed thereafter. In contrast, our proposed approach operates
within the Bayesian framework, where the model parameters
are themselves treated as random variables following (non-
informative) conjugate prior distributions, and therefore can
be adapted to match the normal behavior of the generating
process.

Specifically, we propose a novel adaptive anomaly de-
tection framework for sequential random finite set (RFS)
observations. We assume an unknown Poisson RFS process
generates sequential point pattern data. Our system learns
and monitors the process in an online fashion while deter-
mining whether the data remains in statistical control [26].
Data conforming to the expected behavior are considered
In-Control (IC), or normal, while deviations signify Out-Of-
Control (OOC) data, or anomalies. Anomalies indicate either
a temporary deviation from the in-control process behavior or
a fundamental shift, necessitating an update to the established
process statistical state. Our contributions are the following:

• We investigate the problem of anomaly detection with
sequential random finite set (RFS) observations, and
propose an adaptive anomaly detection framework. This
framework learns the process’s normal behavior in an
on-line fashion, adapting to behavioral shifts, while
being capable of detecting out-of-control (OOC) point
pattern data (i.e., anomalies) that do not conform to the



expected behavior of the process.
• We introduce the Power Discounting Posteriors (PD), a

new class of RFS-based posterior distributions designed
for on-line learning and process monitoring. Subse-
quently, we derive a Bayesian RFS predictive check
statistic, allowing robust detection of OOC data points,
or anomalies.

• Finally, the effectiveness of the proposed approach is
demonstrated through extensive qualitative and quanti-
tative simulation experiments.

The paper is organized as follows. In Section II, we
provide the background on the theory of random finite sets.
In Section III, we formulate the problem tackled in this work,
and subsequently, in Section IV, we discuss the details of
the proposed approach. Finally, in Section V, we evaluate
the proposed approach, and in Section VI, we conclude the
paper.

II. PRELIMINARIES

A. Random Finite Sets

A random finite set (RFS) is a finite-set-valued random
variable where both the number of elements in the set and
the values of these elements are random. Therefore, the main
difference between a random finite set and a random vector
lies in two aspects for the former: firstly, the number of
elements, denoted as n, is itself random, and secondly, these
elements are not only random but also unordered.

More specifically, an RFS X is completely specified by:
a) its cardinality distribution ρ(n) = p(|X| = n), n ∈ N,
which defines the probability distribution over the num-
ber of elements in X , and b) by a family of conditional
joint probability distributions p(x1, . . . , xn|n) that charac-
terize the distribution (i.e., spatial density) of its elements
x1, . . . , xn ∈ X over the state space X . The probability
density function (pdf) f(X) = f({x1, . . . , xn}) of the RFS
X , with f : F(X ) → [0,∞) where F(X ) is the space of all
finite subsets of X , is given by:

f({x1, . . . , xn}) = ρ(n)
∑
ϖ

p(xϖ(1), . . . , xϖ(n)|n) (1)

where ϖ is the permutation of the elements {1, . . . , n}, and
is used as shown above to account for the fact that the
elements in X are unordered. Moreover, for joint symmetric
conditional densities, Eq. (1) simplifies to:

f({x1, . . . , xn}) = ρ(n)n!p(x1, . . . , xn|n) (2)

where n! denotes the n-factorial, and p(x1, . . . , xn|n) is a
symmetric density, meaning that its value remains unchanged
for all of the possible n! permutations of its input variables.
The notion of integration is then given by the set-integral,
which is defined as:∫

f(X)dX = f(∅)+
∞∑

n=1

1

n!

∫
f({x1, . . . , xn}) dx1 . . . dxn

(3)
where by convention f(∅) = ρ(0). Finally, it is straightfor-
ward to show that when the elements x ∈ X of the RFS X
are independent and identically distributed (iid) according to

the probability density p(x) on X , the pdf of X is given by:

f(X) = ρ(n)n!
∏
x∈X

p(x) (4)

Additionally, when the cardinality n follows a Poisson dis-
tribution with parameter λ, refereed to as Pois(λ), i.e., the
cardinality distribution is given by ρ(n) = e−λλn

n! , the RFS
X becomes a Poisson RFS with density given by:

f(X) = e−λ
∏
x∈X

κ(x) (5)

where κ(x) = λp(x) is called the intensity function of X ,
which when integrated over any closed subset S ⊆ X gives
the expected number of elements E[n] in S i.e., E[n] =∫
S
κ(x)dx. The Poisson RFS, due to its importance in diverse

application scenarios [27], serves as the primary focus of this
work for anomaly detection. However, the proposed approach
can be generalized in other RFS models. It is also worth
mentioning that the non-uniformity of the reference measure
in the RFS framework causes problems in anomaly detection
[22]. To overcome this problem, the ranking function has
been proposed [22], which for the iid cluster model is given
by:

r(X) ∝ ρ(n)

∏
x∈X

p(x)

(∥p(x)∥22)
n , (6)

where ∥·∥2 is the L2 norm.

III. PROBLEM FORMULATION

We consider a discrete-time, real valued, and bounded
Poisson RFS process with density function governed by Eq.
(5). This process generates sequentially RFS observations
i.e., at each time-step t it generates the RFS observation
Xt = {x1,t, . . . , xn,t}, where nt = |Xt| ∼ Pois(λt), and
xi,t ∼ Nd (µt, Σt) , i ∈ {1, . . . , nt} i.e., the features or
elements are drawn from a d-variate Normal distribution
with mean vector µt and covariance matrix Σt. The problem
tackled in this work can be stated as follows as:

Given sequential Poisson RFS observations {Xt|t > 0},
our objective is to dynamically learn the posterior predictive
density f(Xt+1|X1:t) for the subsequent time-step t + 1,
based on all preceding observations X1:t up to time t.
Following this, we aim to assess the “extremeness” in
terms of the statistical significance for the newly received
RFS observation Xt+1 in relation to the process’ expected
behavior, and detect OOC point pattern data (i.e., anomalies)
that do not conform to the process’ anticipated behavior.

A high-level overview of the proposed framework is given
next and detailed discussion in Sec. IV. Within the Bayesian
framework, we consider the rate parameter λt along with the
mean vector µt and the covariance matrix Σt as unknown.
We denote the list of the unknown parameters as Θt i.e.,
Θt = (λt, µt, Σt), that belong in a parametric space Θ =
R+ ×Rd ×Rd×d. By making use Eqs. (4)-(5), in this work
the likelihood function f(Xt|Θt) of the Poisson RFS process



can be computed as:

f(Xt|Θt) = e−λt

nt∏
j=1

λtp(xj,t|µt, Σt) (7)

Our goal is to learn on-line the parameters Θt in Eq.
(7) through sequential RFS observations, aiming to ascertain
the anticipated behavior of the process. Simultaneously, we
seek to identify observations that deviate from this expected
behavior (i.e., anomalies), by taking into account the uncer-
tainty of Θt. We formulate this uncertainty assuming that
Θt follows a prior distribution, denoted as π(Θt). The prior
distribution represents our belief on the parameters, with the
non-informative priors [28] being a plausible choice in cases
of process ignorance. Given the RFS observations X1:t up
to time-step t, we compute the posterior density, denoted as
π(Θt|X1:t), which is given by:

π (Θt|X1:t) ∝ f (X1:t|Θt)π(Θt), (8)

resulting in an updated version of the prior informed by the
likelihood. Extending the framework of the classical poste-
rior in the Bayesian approach, we introduce the Power Dis-
counting (PD) posteriors π(Θt|X1:t, α0), further discussed
in Sec. IV-A. These allow for adaptation to changes in the
process’s behavior by learning the parameters Θt over time
using a discounting factor α0. Subsequently, the posterior
predictive distribution f(Xt+1|X1:t, α0), is given by:

f(Xt+1|X1:t, α0) =

∫
f(Xt+1|Θt)π(Θt|X1:t, α0)dΘt, (9)

which derived by integrating out the unknown parameters
with respect to the posterior. Based on this, to determine
whether the received RFS observation Xt+1 at time-step
t + 1 conforms to the process’s expected behavior (i.e.,
is normal or anomalous), we leverage the independence
between the cardinality distribution ρ(nt+1) and the condi-
tional spatial density p(x1,t+1, . . . , xnt+1,t+1|nt+1), to ex-
press the posterior in closed form as π(Θt|X1:t, α0) =
π(λt|n1:t, α0)π(µt, Σt|X1:t, α0). Thus, we can derive the
posterior predictive distributions of the cardinality, and the
spatial density as shown in Eq. (10), and Eq. (11) respec-
tively:

ρ (nt+1|n1:t, α0) =

∫
ρ(nt+1|λt)π(λt|n1:t, α0)dλt, (10)

p (x̄t+1|X1:t, α0) =

∫ ∫
p(x̄t+1|µt, Σt)×

× π(µt, Σt|X1:t, α0)dµtdΣt, (11)

where x̄t+1 =
∑nt+1

j=1 xj,t+1/nt+1 is the sufficient statistic
of the mean vector summarizing all the available information
from the features. This derivation is presented in Sec. IV-B.

Subsequently, we employ posterior predictive checks to
assess the statistical significance of a new observation rela-
tive to the observed sequence of observations. Specifically,
we define two posterior probabilities, denoted as prnt+1 for
the cardinality, and pr

x|n
t+1 for the features given cardinality

at time t+1, which will play the role of posterior predictive
p-values [29], measuring how extreme the observation is for
the posterior prediction.

Finally, we assess the presence of an anomaly via the
Fisher’s combined probability test [30] which in this work
can be defined as:

Pt+1 = −2 log
(
prnt+1 · pr

x|n
t+1

)
. (12)

For uniformly distributed probabilities prnt+1 and pr
x|n
t+1 (dis-

cussed in detail in Sec. IV-B), the distribution of Pt+1 under
the null hypothesis of non-anomaly follows a chi-squared
distribution with 4 degrees of freedom, i.e., Pt+1 ∼ X 2

4 .
Thus, we raise an alarm if:

Pt+1 > q(1− α), (13)

where q(·) is the quantile function of X 2
4 distribution, and α

is a predetermined false alarm rate α.

IV. ADAPTIVE ANOMALY DETECTION IN SEQUENTIAL
RFS OBSERVATIONS

A. Power Discounting posteriors for RFS Point-pattern Data

In a sequential process, as the observation horizon grows,
the posterior distribution becomes more informative. While
beneficial in some cases, this can hinder adaptation to
small systematic changes. Accumulated evidence creates an
“inertia” effect, where posterior parameters require many
observations to shift, making the distribution increasingly
resistant to change. For this reason, we introduce a new class
of posterior distributions, the Power Discounting posteriors
(PD). PD posteriors, via a discounting factor α0, weigh the
importance of the received observations, giving more weight
to the most recent. The idea of power discounting is not new
in Bayesian statistics but in a different set-up [31], [32].
PD posteriors differentiate, as they implement sequential
power discounting; they are suitable for monitoring, but
at the same time, they leverage the temporal significance
of the observations to facilitate adaptation to systematic
changes, and improve the anomaly detection capability. For
the unknown parameters Θt, the general form of the PD
posterior at time time t is:

π (Θt|X1:t, α0) ∝ f (Xt|Θt)

t−1∏
i=1

f (X1:t−1|Θt)
αt−i

0 π(Θt)
αt

0 ,

(14)

where the parameter 0 ≤ α0 ≤ 1 is the discounting
factor weighting the influence of the observations in the
posterior. In extreme cases, such as when α0 = 0, the
process transforms into pure adaptation, as only the latest
observation impacts the posterior while ignoring the previous
observation. Conversely, when α0 = 1, then equal weight
is given to all observations, making the posterior more
informative and appropriate for history-based monitoring.

Because of the independence between λt and
(µt, Σt), their joint prior can be written as
π (λt, µt, Σt) = π (λt)π (µt, Σt) (this product keeps
for the posterior as well, i.e., π(λt, µt, Σt|X1:t, α0) =
π(λt|n1:t, α0)π(µt, Σt|X1:t, α0)).

Lemma 1 and Lemma 2 derive the posterior distribution
of λt and the joint posterior distribution of (µt, Σt), respec-
tively.



Lemma 1: Assuming the prior λt ∼ G (c0, d0), i.e., a
Gamma distribution with hyperparameters c0, and d0, then
the PD posterior distribution is conjugate λt| (n1:t, α0) ∼
G (ct, dt), with ct, and dt, the updated parameters.

Proof: At time t, the posterior of the rate is:

π (λt|n1:t, α0) ∝ ρ (nt|λt)

t−1∏
i=1

ρ (ni|λt)
αt−i

0 π(λt)
αt

0 (15)

Keeping only any expression that contains the unknown
parameters we have that π (λt|n1:t, α0) ∝:

e−λtλnt
t

t−1∏
i=1

(
e−λtλni

t

)αt−i
0

(
e−d0λtλc0

t

)αt
0 =⇒

π (λt|n1:t, α0) ∝ e−λtdtλct
t ,

where ct = αt
0c0 + nt +

t−1∑
i=1

αt−i
0 ni and dt = αt

0d0 + 1 +

t−1∑
i=1

αt−i
0 . Thus, λt|(nt, α0) ∼ G(ct, dt).

Lemma 2: Assuming the prior (µt, Σt) ∼
NIW (m0, l0, ν0, Ψ0), i.e., a Normal-Inverse Wishart
with hyperparameters m0, l0, ν0, and Ψ0, then the PD
posterior distribution is conjugate (µt, Σt) | (X1:t, α0) ∼
NIW (mt, lt, νt, Ψt), with mt, lt, νt, and Ψt, the updated
parameters.

Proof: At time t, the joint posterior of the mean vector
and the covariance matrix is:

π (µt, Σt|X1:t, α0) ∝
nt∏
j=1

p (xj,t|µt, Σt)

t−1∏
i=1

 ni∏
j=1

p (xj,i|µt, Σt)

αt−i
0

(16)

× π(µt, Σt)
αt
0

Keeping only any expression that contains the unknown
parameters we have that π (µt, Σt|X1:t, α0) ∝

|Σt|
−

t∑
i=1

αt−i
0 ni/2

exp

−
1

2
trΣ−1

t

ni∑
j=1

xj,ix
T
j,i


× exp

−
1

2

 t∑
i=1

αt−i
0 ni − 2

t∑
i=1

αt−i
0

ni∑
j=1

xT
j,iΣ

T
t µt


× |Σt|

−
t−1∑
i=1

αt−i
0 ni/2

exp

−
1

2
trΣ−1

t

ni∑
j=1

xj,ix
T
j,i


× exp

−
1

2

t−1∑
i=1

αt−i
0 ni − 2

t−1∑
i=1

αt−i
0

ni∑
j=1

xT
j,iΣ

T
t µt


× |Σt|−αt

0(ν0+d+2)/2 exp

{
−
1

2
αt
0 trΣ

−1
t Ψ0

}
× exp

{
−
αt
0l0

2
(µt −m0)

T Σ−1
t (µt −m0)

}

By doing the appropriate operations and completing the
quadratic forms we have:

π (µt, Σt|X1:t, α0) ∝ |Σt|−(νt+d+2)/2 exp

{
−
1

2
trΣ−1

t Ψt

}
× exp

{
−
λt

2
(µt −mt)

T Σ−1
t (µt −mt)

}

where mt =

αt
0l0m0 +

nt∑
j=1

xj,t +

t−1∑
i=1

αt−i
0

ni∑
i=1

xj,i

αt
0l0 + nt +

t−1∑
i=1

niα
t−i
0

,

lt = αt
0l0 + nt +

t−1∑
i=1

niα
t−i
0 , νt = αt

0ν0 + nt +

t−1∑
i=1

niα
t−i
0

and

Ψt = αt
0Ψ0+αt

0l0m0m
T
0 +

nt∑
j=1

xj,tx
T
j,t+

t−1∑
i=1

αt−i
0

ni∑
j=1

xj,ix
T
j,i−

− 1

αt
0l0 + nt +

t−1∑
i=1

niα
t−i
0

×

αt
0l0m0 +

nt∑
j=1

xj,t +

t−1∑
i=1

αt−i
0

ni∑
j=1

xj,i

×αt
0l0m0 +

nt∑
j=1

xj,t +

t−1∑
i=1

αt−i
0

ni∑
j=1

xj,i

T

.

Thus, (µt, Σt) | (X1:t, α0) ∼ NIW (mt, lt, νt, Ψt).
In cases where prior knowledge is lacking, it is impor-

tant to consider non-informative priors. Among these, we
recommend the use of the Jeffreys’ prior [33]. Its density
function is proportional to the square root of the determinant
of the Fisher information matrix, i.e., π(Θ) ∝ |I(Θ)|1/2,
while, a property, which is of key importance, is its in-
variance under a change of coordinates for the unknown
parameters. In our set-up, we have π(λt) ∝ λ

−1/2
t and

π (µt, Σt) ∝ |Σt|−(d+2)/2 for the rate and the features’
parameters, respectively. The total weight of information
the posterior conveys to the observed sets arises from a
geometric series, and specifically, when t → +∞, then for
cardinality the total weight is of 1/ (1− α0), and for the
features the expected weight is for cardinality the total weight
is of λt/ (1− α0). An illustrative example of the proposed
PD posterior for monitoring the cardinality distribution ρ(n)
is depicted in Fig. 1. Specifically, the figures shows the
cardinality of the received RFS observations over time, with
the corresponding posterior mean shown in blue. The initial
50 observations are simulated from a Pois(10) distribution,
followed by a smooth increase in the rate parameter λt to
12 for the subsequent 30 observations. Finally, the rate λt

smoothly decreases to 5 for the last 20 observations. To
assess the effect of the discounting factor we set three values
for α0, and specifically α0 ∈ {0.8, 0.9, 1}, while a non-
informative prior is employed. We observe that the smaller
the α0, the more the posterior mean adapts to changes.

B. Detecting Anomalies in Sequential RFS Observations
The proposed methodology for anomaly detection is based

on the posterior predictive distribution, which will be the
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Fig. 1. The figure illustrates the adaptive nature of the proposed approach
i.e., how the propped approach tracks the cardinality, and its posterior mean
in time for different values of α0 ∈ {0.8, 0.9, 1}.

representative of the likelihood, taking into account the
uncertainty for Θt = (λt, µt, Σt). In our set-up, the general
form of predictive density of Xt+1 is derived by integrating
out the unknown parameters with respect to the posterior
p(Θt|X1:t, α0). Specifically:

f(Xt+1|X1:t, α0) =

∫
Θt

f(Xt+1|Θt)π(Θt|X1:t, α0)dΘt (17)

It is well known the non-uniformity issues of f(Xt+1|Θt)
(and transition to f(Xt+1|X1:t, α0)), which fails to peak at
the most probable values. The Ranking Function (RF) was
introduced in [22] to alleviate these issues arising from the
likelihood, but we tackle this problem in a different way.
Specifically, considering the independence between the car-
dinality and the features given the cardinality, we will employ
two independent predictive checks. These checks will assess
anomalies for the cardinality and the features, respectively,
based on their corresponding predictive distributions. Then,
we will combine the anomaly evidence of the two predictive
checks into the Fisher score in Eq. (12) for assessing the
presence of anomaly in Xt+1 via (13). Starting from nt+1, its
posterior predictive distribution [34] is a Negative Binomial:

nt+1|(n1:t, α0) ∼ NB

(
ct,

dt
dt + 1

)
. (18)

To employ the predictive check for the cardinality, we define
the set of Highest Predictive Probabilities (HPrP) as

R(nt+1) = {n : ρ(n|n1:t, α0) > ρ(nt+1|n1:t, α0)} (19)

which is the set with the values of the posterior predictive
with higher probability than the observed cardinality nt+1,
with R(nt+1) = ∅ if nt+1 is the mode of the posterior
predictive density. Note that HPrP is closely related to the
Highest Predictive Mass (HPrM), introduced in [35] for a
Bayesian approach in online anomaly detection for univariate
processes. However, in our set-up, we need to define the
probability that quantifies the discrepancy between the ob-
served cardinality and its posterior predictive distribution and
combine this probability with the corresponding probability
of the features rather than employ a decision rule for the
cardinality. Thus, we define the probability of obtaining

results at least as extreme as nt+1 by

prnt+1 =
∑

n/∈R(nt+1)

ρ(n|n1:t, α0). (20)

The choice of HPrP in (20) is optimal in the sense
that minimizes the discrete measure m(Rc) =∑

i δni (ρ(ni|n1:t, α0) > ρ(nt+1|n1:t, α0)), where δni is the
Delta Dirac function. In other words, HPrP is the shortest
region that achieves the sum

∑
n∈R(nt+1)

ρ(n|n1:t, α0),
and consequently maximizes the region that indicates a
discrepancy, an extremely useful property for anomaly
detection. Essentially, prnt+1 aggregates all the probabilities
of values not belonging to R(nt+1), thus having smaller
or equal probabilities than nt+1. Large values for prnt+1

imply that set R(nt+1) has few values, and thus nt+1

has a relatively high probability in the distribution; small
values are associated with extreme values in the posterior
predictive distribution, essentially indicating an anomaly.

Regarding the distribution of prnt+1, it is discrete in the
range [0, 1], as ρ(·|n1:t, α0) is discrete. However, under
certain conditions, the distribution of prnt+1 approximates
asymptotically the standard uniform distribution U(0, 1).
Specifically, it is well known that as ct → +∞ and the
probability of “success” dt/(dt+1) → 1, i.e., when the pos-
terior becomes informative, then the Negative Binomial ap-
proximates the Poisson with λt = ct/dt. For large values of
λt, the R(nt+1) approximates the rejection region of a two-
tailed test of Normal distribution, and prnt+1 approximates
the classical two sided p-value, which follows a U(0, 1).
But even in cases where the conditions of the approximation
are not met, the distribution is uniform as possible due to
its discreteness. Furthermore, the approximation would be
mainly poor for values close to one, rather than close to
zero, which are of main interest in detecting an anomaly,
due to the large number of values with small probabilities in
ρ(·|n1:t, α0). Continuing with the distribution of the features
given the cardinality, we express an anomaly it terms of a
disorder in the mean vector. From basic properties of the
Normal distribution, it is known that the distribution of x̄t+1

is:

x̄t+1 ∼ N (µt, Σt/nt+1) . (21)

Using the posterior π (µt, Σt|X1:t, α0), we derive the poste-
rior predictive as in (17) for the mean vector which is [34]

x̄t+1| (X1:t, α0) ∼ tνt−d+1

(
mt,

λt + 1

λt(νt − d+ 1)nt+1
Ψt

)
,

i.e., a d-variate t-Student distribution, with degrees of free-
dom νt − d + 1, mean vector mt and covariance matrix

λt+1
λt(νt−d+1)nt+1

Ψt. The predictive check for the features is
based on the Hotelling statistic [36], which is uses the Ma-
halanobis distance, and is admissible for testing anomalies
in Normal data [37]. In our case, the Hotelling type statistic
used will be the Mahalanobis distance between the observed
sample mean vector and the posterior predictive mean vector,
weighted by the posterior predictive covariance matrix, i.e.,

T 2
t+1 = (x̄t+1 −mt)

T

(
(λt + 1)d

λt(νt − d+ 1)nt+1
Ψt

)−1

(x̄t+1 −mt),
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Fig. 2. The figure depicts an illustrative example of the proposed approach. The top panel (a) displays the cardinality and sample mean vector of the
observed RFSs over time, the center panel (b) shows scatterplots of the RFSs, and at the lower panel (c) we provide the Fisher score Pt+1 in Eq. (12)
based on the predictive checks. The Jeffreys’ prior is used, while α0 = 1 for the PD in Eq. (14), and α = 1/100 for the quantile function function in Eq.
(13). In (c), the red line is the decision limit q(1 − α), while the light green area indicates the no-anomaly region for the process. An anomalous RFS
observation (marked with red ⋄) is detected at time-step 6 as shown in the figure.

The distribution of T 2
t+1 test statistic is an F with d and

νt − d+ 1 degrees of freedom, i.e., T 2
t+1 ∼ Fd,νt−d+1, with

νt > d − 1 [38]. Significantly large values of T 2
t+1 indicate

a large Mahalanobis distance, and consequently an potential
anomaly. Thus, we define the probability of obtaining results
at least as extreme as x̄t+1 by

pr
x|n
t+1 = 1− CFd,νn−d+1

(
T 2
t+1

)
, (22)

where CFd,νn−d+1 (·) is the cumulative distribution function
of the F distribution with degrees of freedom d and νn−d+1.
It is straightforward to prove that prx|nt+1 ∼ U(0, 1) under the
assumption of no anomaly. Finally, to combine the infor-
mation of the the predictive checks for the cardinality and
the features given the cardinality, we substitute the uniformly
distributed probabilities introduced in (20) and (22) into (12).
Thus, we obtain the Fisher test statistic Pt+1, which sum-
marizes the “extremeness” of the Xt+1 under its posterior
predictive distribution. We trigger an alarm based on (13),
i.e., if Pt+1 > q(1− α), where q(·) is the quantile function
of X 2

4 distribution, and α is a predetermined false alarm
rate α. Figure 2 visualizes a paradigm with a simultaneous
change in the cardinality and the mean vector of the features.
Precisely, for the first five RFS we generate ni ∼ Pois(10),
i ∈ {1, . . . , 5}, and xj,i ∼ N2(02, I2×2), i.e., a bivariate
standard Normal distribution, where j ∈ {1, . . . , ni}. At the
sixth RFS, we introduce an anomaly by increasing the rate
parameter of the cardinality to 16 and adding one standard
deviation to the first component of the mean vector and half
a standard deviation to the second component, i.e., xj,6 ∼
N2((1 0.5)T , I2×2). The Jeffreys’ prior is used, while we set
the discounting factor α0 = 1 (i.e., no discounting) and the
false alarm rate α = 1/100. As we observed, the anomaly
is detected at time t = 6, as X6 deviates significantly from

the previous for both the cardinality (n6 = 16) and the mean
vector (x̄6 = (0.97 0.50)T ).

V. EVALUATION

In this section, we compare the performance of the pro-
posed Bayesian predictive checks (PC) methodology against
the ranking function (RF) introduced in [22] under various
scenarios of anomalies in the sequence of Poisson RFS
observations. Regarding the IC process, we assume batches
of 30 RFSs where the cardinality follows a Pois(10), and the
features follow the bivariate standard Normal distribution,

Regarding the IC process, we generate 10,000 batches of
T = 30 RFSs where the cardinality follows a Pois(10),
and the features follow the N2 (02, I2×2), i.e. the bivariate
standard Normal distribution. For the case of OOC data,
we introduce anomalies in the IC sequences in each time-
step t ∈ {2, . . . , T}, drawing samples from the following 5
scenarios:

1) Spatial Density: we draw from a Normal distribution
with mean vector µ′

t = (1 1)T , i.e., we introduce a
shift size of 1 standard deviation for each component
in the mean vector (Fig. 3(a)).

2) Cardinality Distribution: we draw samples from a Pois-
son with rate λ′ = 20, i.e., we introduce an increase
to the cardinality rate (Fig. 3(b)).

3) Cardinality Distribution: we draw samples from a
Poisson with rate λ′ = 2, i.e., we introduce a decrease
to the cardinality rate (Fig. 3(c)).

4) Spatial Density and Cardinality: we draw samples from
a Poisson with rate λ′ = 15 and a Normal with mean
vector µ′

t = (1 1)T , i.e., we introduce a moderate
increase to the cardinality rate and a moderate shift
for the mean vector (Fig. 3(d)).



5) Spatial Density and Cardinality: we draw from a Pois-
son with rate λ′ = 5 and a Normal with mean vector
µ′
t = (1 1)T , i.e., we introduce a moderate decrease to

the cardinality rate and a moderate shift for the mean
vector (Fig. 3(e)).

It is important to note that the 5 investigated OOC sce-
narios pose a significant challenge due to subtle deviations
in cardinality distribution and spatial density of the features,
relative to the IC process. Next, we demonstrate how our
proposed approach handles these challenging scenarios com-
pared to existing state-of-the-art methods.

PC requires the definition of a prior distribution, so,
within this simulation study, we will take the opportunity
to examine its sensitivity performance under the absence
or the presence of prior information. Precisely, we will use
the non-informative Jeffreys’ prior (denoted as J) while for
the informative prior setting (denoted as inf ) we assume
λ ∼ G(50.5, 5) and (µt, Σt) ∼ N(m0 = 02, l0 = 50, ν0 =
48, Ψ0 = 49 · I2×2), where 02 is the zero vector and I2×2 is
the diagonal matrix. Note that this is the resulting posterior
on average for a process with five IC RFSs using the Jeffreys’
prior and setting α0 = 1. Furthermore, to assess the effect
of the discounting parameter α0 to the performance, we set
α0 ∈ {0.8, 0.9, 1}. Thus, we have 2 × 3 = 6 versions of
PC for the different choices of the prior and α0. Regarding
the competing method RF (shown as a dotted black line in
Fig. 3), we use the theoretical values of the IC process to
achieve the best possible performance. In other words, for
the RF method we assume that the parameters are completely
known (not estimated from a training dataset), while for PC
are estimated by the information of the prior (if available)
and the IC observations until the time of an anomaly, e.g.,
for a test at time 3 we have the information of only 2 RFS
observations.

For a fair comparison between the two methods, we set the
false alarm rate α = 1/100 for the PC, and we equivalently
set the quantile of the distribution of the ranking function
under the IC process to the 0.01th level, in order to derive
the corresponding decision limits. As a performance metric
we calculate the F1(t), given by:

F1(t) = 2 · tpt/(2 · tpt + fpt + fn), (23)

where tpt and fn are the percentages of true positives and
false negative for an OOC sequence, respectively, and fpt
is the percentage of false positives (or false alarms) for an
IC sequence at each time t ∈ {2, . . . , 30}. Note, that we
do not provide any test for t = 1, as PC starts testing
from t = 2, “sacrificing” the first observation to obtain the
posterior distribution. As we observe in Figure 3, the learning
process of PC improves the detection performance, especially
for the non-informative settings, while the prior information
is beneficial, especially when the horizon of the observed
sets is short. Regarding the values of the discounting factor,
α0 = 1 achieves steadily higher performance as it uses
all the information of the observed RFSs. However, other
choices offer comparable performance and the flexibility
for fine-tuned adaptation. Comparing the two methods, we
observe that PC outperforms RF, achieving greater F1 for
all the scenarios. Even in scenarios where the RF has good
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Fig. 3. The F1(t) scores for t ∈ {2, . . . , 30} of the proposed predictive
checks (PC) and ranking function (RF) for 5 scenarios.



detection performance (e.g. scenario 1 or 2), the PC, even
with a non-informative prior, needs only 2-3 IC observations
to achieve better performance, where the parameters are
assumed known. When the cardinality rate decreases, RF ap-
pears incapable of detecting anomalies. The ranking function,
a weighted product of the cardinality distribution and feature
likelihood, determines alarm thresholds. We raise an alarm
when the ranking function’s score falls below a threshold
derived from the IC ranking function’s quantile. For this
reason, when the cardinality decreases, the likelihood factors
will also decrease. Consequently, their product may not reach
extremely low values, even with changes to IC parameters.
This makes successful anomaly detection very difficult. On
the other hand, PC is still robust in these scenarios, due to
its axiomatic framework for anomaly detection.

VI. CONCLUSION

In this work, we developed a methodological framework
to efficiently detect anomalies online for the Poisson point-
patterns process while relaxing the assumption of known
parameters. We deviated from the conventional approach
of separating the training and testing phases; instead, we
proposed a Bayesian self-starting process that sequentially
estimates the unknown parameters while assessing the con-
formity of new sets. Additionally, we introduced a new
class of power discounting posterior distributions alongside
posterior predictive checks, enabling adaptive learning and
robustness in detecting anomalous observations.
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