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Abstract— Path planning is a fundamental capability of
autonomous Unmanned Aerial Vehicles (UAVs), enabling them
to efficiently navigate toward a target region or explore com-
plex environments while avoiding obstacles. Traditional path-
planning methods, such as Rapidly-exploring Random Trees
(RRT), have proven effective but often encounter significant
challenges. These include high search space complexity, sub-
optimal path quality, and slow convergence, issues that are
particularly problematic in high-stakes applications like disas-
ter response, where rapid and efficient planning is critical. To
address these limitations and enhance path-planning efficiency,
we propose Vision Language Model RRT (VLM-RRT), a hybrid
approach that integrates the pattern recognition capabilities
of Vision Language Models (VLMs) with the path-planning
strengths of RRT. By leveraging VLMs to provide initial direc-
tional guidance based on environmental snapshots, our method
biases sampling toward regions more likely to contain feasible
paths, significantly improving sampling efficiency and path
quality. Extensive quantitative and qualitative experiments with
various state-of-the-art VLMs demonstrate the effectiveness of
this proposed approach.

I. INTRODUCTION

As Unmanned Aerial Vehicles (UAVs) operate in increas-
ingly dynamic and complex environments, the demand for
reliable navigation [1], including efficient and adaptive path-
planning strategies [2], has grown significantly. Path plan-
ning, a critical component of autonomous UAV navigation,
determines the optimal path from a starting point to a target
region while avoiding obstacles, often optimizing specific
mission objectives [3]–[6]. This process is central to appli-
cations such as emergency response [7]–[11], surveillance
[12]–[16], and automated inspection [17]–[22].

Existing sampling-based path-planning algorithms, such
as Rapidly-exploring Random Trees (RRT) [23], [24], offer
significant advantages, including their ability to handle high-
dimensional spaces and their probabilistic completeness,
meaning they will eventually find a solution if one exists.
However, these methods require careful fine-tuning and often
fail to converge to optimal solutions, particularly in complex
or cluttered environments. This limitation is critical, as
it reduces their reliability, making them less suitable for
high-stakes applications like search-and-rescue and disaster
response missions, where rapid and dependable solutions are
paramount. Recent hybrid approaches combining sampling-
based methods with machine learning techniques have shown
promise in addressing these shortcomings, offering improved
computational efficiency and path quality [25]–[27].
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In this direction, this work integrates multimodal large
language models (LLMs) with RRT-based path planning to
tackle these challenges. The proposed framework, Vision
Language Model RRT (VLM-RRT), combines the strengths
of sampling-based path planning through RRT with the
pattern-matching capabilities and emergent reasoning of
LLMs, thereby enhancing autonomous UAV navigation by
enabling efficient and robust path planning. Specifically, the
proposed approach incorporates a VLM module into the
path-planning process to analyze environmental snapshots
and dynamically guide the planner to prioritize and sample
from specific regions. This reduces redundant exploration
and accelerates convergence by biasing the sampling process
toward regions more likely to contain feasible and efficient
paths, thus improving convergence rates and path quality. The
contributions of this work can be summarized as follows:

• We propose VLM-RRT, a novel framework that aug-
ments traditional RRT-based path planning with the
advanced reasoning capabilities of Vision Language
Models (VLMs). By leveraging a VLM module to
analyze environmental snapshots, VLM-RRT enhances
navigation decisions by dynamically guiding the sam-
pling process, effectively biasing it toward regions with
a higher likelihood of containing optimal paths.

• Extensive qualitative and quantitative experimental eval-
uations using OpenAI’s GPT-4o and Meta’s Llama 3.2
multimodal LLMs demonstrate the effectiveness of the
proposed approach in terms of sampling efficiency and
path quality compared to the standalone RRT approach.

The remainder of this paper is organized as follows.
Section II provides background and discusses related work,
Section III formulates the problem, and Section IV details the
proposed approach. Finally, Section V evaluates the proposed
approach, and Section VI concludes the paper.

II. RELATED WORK

The Rapidly-exploring Random Tree (RRT) algorithm [23]
is a sampling-based method for path planning, designed to
efficiently explore high-dimensional configuration spaces. It
incrementally builds a tree by randomly sampling points in
the space and connecting them to the nearest point in the
existing tree, ensuring rapid exploration. RRT is particularly
effective for finding feasible paths in complex, obstacle-filled
environments, making it a widely used approach in robotics
and autonomous navigation.

Significant algorithmic refinements have enhanced RRT’s
capabilities over the years. For instance, the RRT* algorithm
[28] introduced asymptotic optimality through node-rewiring



mechanisms by minimizing a predefined cost function (e.g.,
path length), while Informed RRT* [29] developed advanced
sampling strategies to guide exploration near optimal solu-
tion regions. On the other hand, RRT-Connect [24] grows
two trees bidirectionally from both the start and goal config-
urations. This approach, combined with a greedy heuristic,
allows faster exploration of the configuration space and
quicker convergence to a solution compared to the standard
RRT.

To tackle issues related to random sampling and low
path efficiency in RRT, an improved approach incorporating
the Artificial Potential Field (APF) method was recently
proposed in [30]. This method introduces a probability value
during the expansion step of the random tree in the basic
RRT algorithm, enhancing convergence speed toward the
target node. Similarly, the authors in [31] proposed an RRT
variant that utilizes adjustable probability and sampling area
strategies to quickly find a feasible path. This planner is then
combined with an optimizer that uses the Dijkstra algorithm
to prune and improve the initial path. More recently, the work
in [32] combined RRT with model predictive control (MPC)
utilizing control barrier functions (CBF) to enforce safety-
critical constraints. Additionally, recent advancements in
learning-based RRT methods have shown promising results
in improving path-planning efficiency. The Neural Informed
RRT* approach [33] utilizes a neural network to learn the
topology of the free space and infer states close to the opti-
mal path, thereby guiding the search toward more promising
regions, whereas Neural RRT* [34] employs convolutional
neural networks to predict a probabilistic heatmap of states
for guiding exploration.

Finally, the emergence of Large Language Models (LLMs)
[35], [36] has revolutionized artificial intelligence, enabling
advanced reasoning and knowledge-driven applications in
autonomous navigation. Recent research has explored the
potential of LLMs to enhance navigation tasks by combining
their reasoning capabilities with domain-specific methods.
For instance, the work in [37] demonstrated that LLMs can
perform high-level planning tasks for navigation, including
identifying landmarks from observed scenes, tracking navi-
gation progress, and correcting course. More closely related
to our work is the approach in [38], where the authors
integrated LLMs with the A* path-planning algorithm [39],
achieving enhanced pathfinding efficiency in terms of time
and space complexity.

In summary, RRT-based path-planning approaches are
extensively utilized for their ability to explore state spaces
efficiently and effectively. However, they often require metic-
ulous parameter tuning and tend to exhibit slow convergence.
While these methods can find optimal solutions, they fre-
quently incur significant computational overhead, with high
memory and time demands, particularly when searching for
the best path. This limitation is especially critical in applica-
tions such as autonomous vehicles, where rapid identification
of efficient paths is essential due to constraints like limited
power or fuel resources. Motivated by these challenges,
this work proposes a novel path-planning framework that

integrates the reasoning capabilities of multimodal large
language models with RRT-based path search to enhance the
efficiency of path generation.

III. PRELIMINARIES

This study addresses a UAV path-planning challenge in-
spired by real-world wildfire disaster response scenarios. The
objective is to autonomously navigate a UAV through fire-
affected forested regions to locate survivors while ensuring
safe traversal by avoiding hazardous fire fronts. The UAV
must reach a predefined goal region while dynamically adapt-
ing its trajectory to evolving environmental conditions. To
support this task, we assume the presence of a disaster early-
warning system (EWS) equipped with multimodal sensing
capabilities, including satellite imagery and meteorological
data. This system provides real-time updates on the locations
of both fire fronts and survivors, enabling the UAV to
maintain up-to-date situational awareness. Leveraging this
information, the UAV must compute an optimal trajectory
that balances mission success with environmental constraints,
ensuring efficient and safe navigation through the disaster
zone.

A. UAV Dynamical Model

Without loss of generality, we assume that the dynamical
behavior B of a UAV agent can be described by a linear
time-invariant (LTI) system [40] of the following form:

B(A,B,C,D) :=

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(1)

where B(A,B,C,D) is the input/output/state representation
of the system, with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
and D ∈ Rp×m known. The state, control input, and output
of the system at time-step t ∈ N are given respectively by
x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, and y(t) ∈ Y ⊂ Rp.
For conciseness, we assume that x(t) ∈ R6 represents the
3D position and linear velocity of the UAV in Cartesian
coordinates. The control input force is denoted by u(t) ∈ R3,
and the UAV position by y(t) ∈ R3.

B. Environment Model

The UAV operates within a bounded three-dimensional
environment E ⊂ R3, which consists of (a) a designated goal
region G that the UAV must reach during its mission and (b)
a set of fire fronts O that must be avoided. The mission
begins at the UAV’s home depot S, from which it departs at
the start of the search and concludes upon reaching G. All
relevant environmental information, including the locations
of S, G, and fire fronts o ∈ O, is assumed to be fully known
and provided to the UAV at the outset of the mission. In this
formulation, S, G, and the set of fire fronts O are represented
as rectangular cuboids of varying dimensions.



C. Problem Formulation

The autonomous UAV navigation problem, as previously
discussed, can be formulated as a finite-horizon optimal
control problem, as presented in Eq. (2). The objective is
to determine the optimal UAV control inputs u(t), for t ∈
{0, . . . , T − 1}, over a suitably chosen planning horizon of
T time steps. These control inputs guide the UAV toward the
goal region G by tracking a reference path P while adhering
to the system’s dynamics and constraints, as shown.

min
u,y

T−1∑
t=0

(
∥y(t)− P(t)∥2Q + ∥u(t)∥2R

)
s.t. x(t+ 1) = Ax(t) +Bu(t), ∀t ∈ {0, . . . , T − 1},

y(t) = Cx(t) +Du(t), ∀t ∈ {0, . . . , T − 1},
x(0) = xinit,

x(t) ∈ X , ∀t ∈ {0, . . . , T − 1},
u(t) ∈ U , ∀t ∈ {0, . . . , T − 1},
y(t) ∈ Y, ∀k ∈ {0, . . . , N − 1}.

(2)
In the formulation above, xinit represents the agent’s initial
state, positioning the agent within its home depot S. The
objective is to track the reference path P(t), t ∈ {0, . . . , T −
1} (which describes a feasible path to the goal region), over
the time horizon, subject to the UAV’s dynamical constraints
and operational behavior. The norm ∥u(t)∥2R denotes the
quadratic form u(t)⊤Ru(t) (likewise for ∥ · ∥2Q), where R ∈
Rm×m is the control cost matrix and Q ∈ Rp×p is the output
cost matrix. In essence, the objective function minimizes
the weighted sum of the tracking error (i.e., deviation from
the reference path) and control effort, with the weighting
scheme captured in the matrices Q and R, respectively.
The reference path P provides a collision-free path from
S to the goal region G. Once P is known, the solution to
the optimization problem in Eq. (2) can be obtained using
numerical optimization, such as quadratic programming [41].
In the following section, we present how the proposed VLM-
RRT approach generates the reference path P by integrat-
ing a Large Language Model with the Rapidly-exploring
Random Tree algorithm. To simplify the analysis without
loss of generality, we assume that the UAV operates at a
fixed altitude, thereby restricting our formulation to a planar
2D setting. However, the proposed approach can be readily
extended to three-dimensional navigation.

IV. PROPOSED APPROACH

Traditionally, we can obtain the reference path P using the
RRT sampling-based path-planning algorithm, depicted in
Alg. 1. As demonstrated, the algorithm receives as input the
initial position of the agent, denoted as y(0), at time t = 0,
along with the goal region Go ∈ R2 (e.g., the centroid of the
target region G) and the set of fire fronts O. The algorithm
proceeds by incrementally constructing a tree V , originating
from the agent’s initial state and expanding toward the goal
region Go. During each iteration, a point νrand is randomly
sampled from the space, and the tree is extended from its

Algorithm 1 Traditional RRT Algorithm
Require: y(0), Go, O, δ

1: V ← {y(0)}, E ← ∅, r ← ∅, i← 0
2: while i < N do
3: νrand ← SampleState()
4: νnearest ← NearestNeighbor(V, νrand)
5: νnew ← Steer(νnearest, νrand, δ)
6: i← i+ 1
7: if PathFree(νnew, νnearest,O) then
8: V ← V ∪ {νnew}, E ← E ∪ {(νnearest, νnew)}
9: end if

10: if ||νnew − Go||2 ≤ ϵ then
11: P ← RetrievePlan(V,E, νnew)
12: return P
13: end if
14: end while

closest existing vertex νnearest toward νrand, resulting in a new
vertex νnew, provided that the path does not intersect any fire
fronts, ensuring navigational safety. The extension follows
a predefined step size δ, systematically guiding the tree’s
exploration of the space. This iterative process continues
until either the tree successfully reaches the goal region (i.e.,
∥νnew − Go∥2 ≤ ϵ, where ϵ > 0), in which case the path is
retrieved via backtracking, or the predefined iteration limit
N is reached, resulting in the algorithm failing to converge.

The RRT algorithm, while widely effective across various
motion planning tasks, encounters several inherent chal-
lenges that can impact its performance. One significant
limitation is low sampling efficiency, as traditional RRT
often produces a high proportion of invalid or redundant
samples. This inefficiency increases computational overhead
and hampers the algorithm’s ability to explore the search
space effectively. Additionally, the resulting paths may in-
clude unnecessary detours or redundant nodes, which can
lead to suboptimal path quality and increased traversal cost.

To address these limitations, VLM-RRT utilizes LLMs
as general-purpose pattern-matching machines and integrates
their reasoning capabilities into the RRT search to guide the
sampling process toward regions most likely to contain the
optimal solution.

A. VLM-RRT

The VLM-RRT algorithm, shown in Alg. 2, integrates
VLMs into the sampling process of RRT. In this frame-
work, VLMs serve as general-purpose pattern-matching and
reasoning machines that extract contextual information from
the current environment, as illustrated in Fig. 1. The VLM
output aims to improve sampling efficiency and steer the
tree exploration toward regions that are more likely to yield
an optimal path. In our context, “optimal” refers to the
collision-free route that minimizes the total travel distance
from the starting position to the goal region, ensuring the
most efficient navigation.

At the start of each planning iteration, the algorithm
captures the current state of the environment as an image



VLM

Current Environment

Prompt Manager

Task Description: [Task Background] [Input Definitions] [Output Requirements]
Navigation Instruction: Analyse the visual observation to determine if the UAV has reached the goal (red dot).
[Environment Snapshot] [Previous State]
   - If the goal is reached, stop the navigation and respond with Final Answer: Goal Reached!.
   - If the goal is not reached, select the best direction to move toward the goal while avoiding collisions.

Thought: Analyse the visual observation and reason about the best next sampling direction.
Action: Output only one word indicating the next direction to move. 
Choose from: {north, northeast, east, southeast, south, southwest, west, northwest}.

(a) VLM Guided Autonomous Navigation System (b) Prompt System

Environment Snapshot: Based on 
the visual Input, help the UAV reach
its destination efficiently while avoiding 
obstacles.
Trajectory: The Trajectory also serve as 
[Previous state] in VLM-RRT as the 
[Environment Snapshot] contained 
previous navigation information 
and VLM only need to give guidance 
for the current state (position). 

Obstacle
Current Position

Starting Point Previous Position

Goal Point

RRT

Fig. 1. Our basic system consists of two types of prompts, task descriptions and basic inputs. We match a snapshot of the current environment with the
task instructions, incorporating the current navigation state and history into the prompt to activate the agent’s global dynamic exploration capability.

Algorithm 2 VLM-RRT Algorithm
Require: y(0), Go, O, δ, γ

1: V ← y(0), E ← ∅, r ← ∅, i← 0
2: while i < N do
3: Ecurrent ← GetEnvironmentState()
4: α← U(0, 1)
5: if α ≤ γ then
6: ν̂ ← PickLeafNode(V,Ecurrent)
7: d← GetVLMdirection(ν̂, Ecurrent)
8: νrand ← SampleStateVLM(ν̂, d, r, θ)
9: else

10: νrand ← SampleState()
11: end if
12: νnearest ← NearestNeighbor(V, νrand)
13: νnew ← Steer(νnearest, νrand, δ)
14: i← i+ 1
15: if PathFree(νnew, νnearest,O) then
16: V ← V ∪ νnew, E ← E ∪ (νnearest, νnew)
17: end if
18: if ||νnew − Go||2 ≤ ϵ then
19: P ← RetrievePlan(V,E, νnew)
20: return P
21: end if
22: end while

Ecurrent using the function GetEnvironmentState. This
image encodes the locations of fire fronts O, the goal region,
and the state of exploration represented by the tree V . In this
representation, the goal region and the leaf nodes in V are
distinguished using different colors.

Subsequently, with probability γ, the algorithm decides
whether to take a VLM-informed exploration step. In Line 4,
the random variable α is drawn from the uniform distribution
in the range (0, 1). With probability γ, the proposed approach
randomly selects a leaf node ν̂ from V , as shown in Line
6 of Alg. 2, and then employs the VLM to determine the

direction d in which the agent should move to reach the
goal region, given the selected node ν̂. This is achieved
through the function GetVLMdirection, as shown in Line
7, which leverages the VLM via prompt engineering to detect
the goal region and reason about the direction d the agent
should take by analyzing the environment image Ecurrent.

The algorithm then proceeds by randomly sampling a new
point νrand from a sector R, centered at ν̂, with direction d,
radius r, and angle θ, as described in Line 8. Otherwise,
with probability 1 − γ, the algorithm follows the standard
RRT sampling strategy, selecting νrand from anywhere in the
environment using the function SampleState, as shown
in Line 10. Subsequently, the algorithm operates similarly to
the original RRT, where the tree is expanded from its nearest
existing vertex, νnearest, in the direction of νrand, generating a
new vertex νnew. This expansion occurs only if the resulting
path does not intersect any fire fronts, thereby ensuring safe
navigation toward the goal region. This iterative process
continues until either the tree successfully reaches the goal
region or the algorithm reaches the predefined iteration limit.

B. Prompt Engineering
The prompt engineering methodology leverages the

VLM’s pattern-matching capabilities. As shown in Fig. 1,
our system implements structured prompts that combine
task descriptions with environmental snapshots, incorporat-
ing both current navigation states and historical data. The
prompt structure defines specific input parameters, output
constraints, and environmental context for navigation guid-
ance.

As demonstrated in Fig. 2, we experimented with three
prompting techniques. Zero-shot prompting enables direct
decision-making using only task instructions and current
state information. Few-shot prompting augments this by
including predefined example scenarios, ranging from unob-
structed paths to multi-obstacle configurations, which serve
as reference cases for similar navigation contexts. We inte-
grated Chain of Thought (CoT) prompting [42] to enhance



                                                 ...

 Example 1:
 [Simple Clear Path]
 Visual Description: Blue dot near bottom-left, red dot at top-right, no 
 Black obstacles 
 Correct Direction: northeast

 Example 2:
 [Single Black Obstacle Blocking Direct Path]
 Visual Description: Black obstacle blocking the most direct route 
 between blue and red dots, requiring a slight detour
 Correct Direction: east

 Example 3:
 [Multiple Black Obstacles Requiring Strategic Navigation]
 Visual Description: Several Black obstacles creating a maze-like 
 environment, forcing a strategic path around obstacles toward the red 
 dot
 Correct Direction: southeast

                                                       ... 

 You are a path planning expert guiding a robot in a 2D 
 environment. In the given scene:

 The green dot is the start point.
 The red dot is the goal point.
 The blue dot is the current position.
 Black rectangles represent obstacles.
 The thin blue lines show the explored path.

 Based on the scene, suggest the best direction for the robot to move 
 from the current position (blue dot) toward the goal (red dot). 
 Respond with ONLY ONE WORD from the following directions: 
 "north, northeast, east, southeast, south, southwest, west, northwest."  
 
 Prioritize paths that minimize collisions and move efficiently toward 
 the goal.

Few-Shot PromptingZero-Shot Prompting

                                                 ...
 Provide a step-by-step thought process before giving the final 
 answer.

 Example 1:
 [Simple Clear Path]
 Visual Description: Blue dot near bottom-left, red dot at top-right, no 
 Black obstacles
 Reasoning: The direct northeast path is open, so the robot moves 
 northeast.
 Correct Direction: northeast

 Example 2:
 [Multiple Black Obstacles Requiring Strategic Navigation]
 Visual Description: Several Black obstacles creating a maze-like 
 environment, forcing a strategic path around obstacles toward the red 
 dot
 Reasoning: Northeast and east are blocked, but southeast remains 
 open and moves toward the goal.
 Correct Direction: southeast
                                                       ... 

Chain of Thought Prompting

Fig. 2. Comparison of different prompt engineering techniques for navigation decision-making.

the system’s reasoning capabilities. The CoT framework
structures the decision-making process into explicit steps:
obstacle identification, relative position analysis, and path
feasibility evaluation. This structured approach enables the
model to systematically process environmental constraints
before determining movement directions.

V. EVALUATION

A. Simulation Setup

To evaluate our approach, we assume that an autonomous
UAV agent evolves (assuming a fixed altitude) inside a
bounded environment E ⊂ R2 of dimensions 500m×500m.
The agent’s planar motion is captured by a 4-dimensional
state vector x(t) = [x1, x2, ẋ1, ẋ2]

⊤ ∈ X ⊂ R4, comprising
its position (x1, x2) ∈ R2 and velocity (ẋ1, ẋ2) ∈ R2 compo-
nents within the 2D Cartesian coordinate system. The agent
is controllable and capable of following specific directional
and speed commands via the control input u(t) ∈ U ⊂ R2,
which corresponds to the applied control force. The matrices
A ∈ R4×4 and B ∈ R4×2, shown in Eq. (1), are given by:

A =

[
I2×2 ∆T · I2×2

02×2 (1− ζ) · I2×2

]
, B =

[
02×2

∆T
m · I2×2

]
,

where ∆T signifies the sampling interval, ζ is the air
resistance coefficient, and m represents the mass of the agent.
Additionally, I2×2 and 02×2 are the 2-by-2 identity and zero
matrices, respectively. The output vector y(t) ∈ Y ⊂ R2

consists of the UAV’s position at time step t; therefore,
the matrices C ∈ R2×4 and D ∈ R2×2 are given by[
I2×2 02×2

]
and 02×2, respectively. The parameters ∆T ,

ζ, and m are set to 1 s, 0.2, and 1.05 kg, respectively. The
control input is bounded in each dimension within the range
[−10, 10]N, and the UAV’s maximum velocity is capped at
vmax = 15m/s. The starting and goal regions S and G, as
well as the fire fronts to be avoided o ∈ O, are represented
as rectangular regions with random dimensions, as shown in
Fig. 1(a).

Unless otherwise indicated, the VLM-RRT step size δ is
set to ∆T · vmax and ϵ = 1m. The sampling sector R has
radius r = 30m and angle θ = 45◦, and the default value for

TABLE I
PERFORMANCE COMPARISON WITH COMPETING APPROACHES.

Algorithm LLM Avg. Iterations (N ) Avg. Path Length (m)

A* [39] - 514 52.73

LLM-A* [38] GPT-4o 410 52.73
Llama 3.2V 405 52.80

RRT - 423 56.48
RRT* [28] - 477 53.89

VLM-RRT GPT-4o 172 54.56
Llama 3.2V 176 55.87

the probability γ is set to 0.85. We should mention here that
the output of the VLM-RRT algorithm is a path of length
ℓ, i.e., a sequence of ℓ points, which is converted to the
continuous reference path P to be tracked by fitting a spline
curve [43]. The planning horizon is set to T = 2.5ℓ, and
subsequently, T evenly spaced points (i.e., with equal arc-
length spacing) are sampled from P between the starting
and goal points. The optimization in Eq. (2) is solved as
a quadratic program (QP) with the Gurobi solver, with the
matrices Q and R set to 0.9I2×2 and 0.1I2×2, respectively.

We have evaluated the performance of our proposed ap-
proach by integrating two state-of-the-art VLMs to support
autonomous navigation: OpenAI’s GPT-4o [44] and Meta’s
Llama 3.2 90B Vision Instruct [45]. GPT-4o is a multi-
modal model with approximately 1.8 trillion parameters,
accessed via OpenAI’s API, whose advanced vision-language
processing capabilities were leveraged for environmental
interpretation and decision support within our UAV naviga-
tion framework. In contrast, Meta’s Llama 3.2 90B Vision
Instruct, with 90 billion parameters, facilitates multimodal
reasoning to provide visual understanding and contextual
analysis critical to the VLM-RRT path-planning algorithm.

B. Results

We begin the evaluation by comparing the proposed ap-
proach with the closely related work in [38], where the
authors integrated LLMs with the A* path-finding algo-
rithm [39]. Additionally, we compare it with the traditional
RRT approach [23] and the RRT* algorithm [28]. Table I



(a) RRT (b) RRT* (c) VLM-RRT

Fig. 3. Illustrative example of the path-planning behavior obtained with: (a) RRT, (b) RRT* and (c) VLM-RRT.

TABLE II
PERFORMANCE OF VLM-RRT UNDER VARIOUS MODELS AND PROMPTING TECHNIQUES.

Algorithm VLM Prompt Technique Success Rate Avg. Iterations (N ) Avg. Path Length (m)

RRT - - 82% (41/50) 343 58
RRT* - - 88% (44/50) 302 45

VLM-RRT (Ours) GPT-4o
Zero-shot 68% (34/50) 93 47
Few-shot 94% (47/50) 89 46

CoT 86% (43/50) 94 48

Llama 3.2V
Zero-shot 56% (28/50) 102 48
Few-shot 90% (45/50) 88 49

CoT 78% (39/50) 95 47

presents the average number of iterations required for conver-
gence and the resulting path length for each approach. These
results were obtained by averaging 100 random scenarios
(i.e., random environment configurations) in a Monte Carlo
(MC) simulation. It is important to note that while the
A* and RRT approaches are not directly comparable (in
terms of the number of iterations), the results indicate a
consensus on the performance improvement achieved when
these planning algorithms are integrated with LLMs. In
particular, the VLM-RRT approach significantly improves
the convergence rate compared to the original RRT algorithm
while also enhancing path quality (in terms of path length).
Moreover, the VLM-RRT approach achieves path quality
comparable to that of the more advanced RRT*, but with
fewer iterations. An illustrative example is shown in Fig. 3.
These results were obtained using CoT prompting.

In the next experiment, we conduct a more thorough
analysis of the proposed VLM-RRT approach in terms of
the following metrics:

1) Success Rate: Defined as the percentage of experi-
ments in which a collision-free path from the start
to the goal region is successfully found within the
maximum number of iterations N = 500.

2) Number of Iterations: The total number of iterations
required to obtain a feasible path.

3) Path Length: Assessed via the length of the final path
from the start to the goal region.

The above metrics are computed on a per-experiment basis
and then averaged across 250 MC runs, as shown in Table II.
As shown in the results, RRT and RRT* achieve success
rates of 82% and 88%, respectively. In contrast, VLM-
RRT surpasses the performance of the traditional approaches,

TABLE III
VLM-RRT ROBUSTNESS ANALYSIS

γ Success Rate (%) Avg. Number of Iterations (N )
1.0 79 86
0.9 88 92
0.8 92 105
0.7 95 102
0.6 93 128
0.5 89 142

particularly under few-shot and CoT prompting, while requir-
ing significantly fewer iterations. Additionally, VLM-RRT
achieves higher path quality in terms of path length compared
to the traditional RRT, as shown in Table II. In terms of
path length, VLM-RRT achieves performance comparable to
the more advanced RRT*, though this is accomplished with
fewer iterations. The results also highlight the differences in
performance obtained using different prompting techniques,
as well as the effectiveness of the two LLMs, indicating an
advantage for GPT-4o.

The next experiment investigates how the parameter γ
(i.e., the probability of taking a VLM-informed decision)
affects the sensitivity of the algorithm and how this can be
fine-tuned to increase the robustness of VLM-RRT. Table III
shows the algorithm’s performance (in terms of success rate
and number of iterations) for different values of γ ranging
from 1 to 0.5, obtained over 100 MC trials. When γ = 1,
VLM-RRT always takes a VLM-informed decision at each
time step and samples a new point from within the area
suggested by the VLM. Although this can lead to faster
convergence in many situations, the results show that this
strategy decreases robustness (i.e., increases the likelihood



Fig. 4. Illustration of the VLM-RRT algorithm navigating toward dynamic goals in a 2D environment. The scenario involves three goal relocations.
Red point is the starting position, green point is the goal position which changes over time, and the blue point is a leaf node. The yellow sector is the
VLM-informed sampling region.

of failure to converge). From our experiments, we have
observed that this is due to two main reasons: (a) the VLM
can make mistakes, which consequently lead the algorithm
to make incorrect decisions, and (b) γ = 1 leads to greedy
behavior, which in turn causes the algorithm to become stuck
in infeasible regions. On the other hand, a lower value of γ
causes the algorithm to behave more similarly to the original
RRT, resulting in a drop in success rate due to reaching the
maximum number of iterations. Therefore, a fine-tuned value
of γ optimally balances exploration and exploitation, leading
to enhanced robustness and performance, as shown.

In emergency response scenarios, mission parameters of-
ten change dynamically as new information becomes avail-
able. For instance, the location of survivors may be updated
based on new sensor data or witness reports, requiring rapid
replanning of UAV trajectories. To evaluate our system’s per-
formance in such dynamic scenarios, we conducted a series
of experiments with dynamic goal locations. Figure 4 shows
one such scenario where the goal region changes location
dynamically during the mission. The VLM demonstrated
a consistent ability to identify changes in the location of
the goal region during the mission, achieving a detection
rate of 92% across 50 random scenarios in which the goal
region’s location varied over time. In cases where the VLM
failed to immediately recognize the new goal location, it
typically required one additional sampling iteration to correct
its direction. We observed that the VLM’s performance in
recognizing and adapting to new goal locations remained
robust even in cluttered environments, though the conver-
gence time increased when obstacles were present between
the UAV’s position and the new goal location. This increase
in convergence time was primarily due to the necessary local
path adjustments around obstacles rather than any delay in
goal recognition or sampling direction updates.

VI. CONCLUSION AND FUTURE WORK

In this work, we present Visual-Language Model RRT
(VLM-RRT), a hybrid path-planning framework that com-

bines the pattern recognition capabilities of Vision-Language
Models (VLMs) with the efficiency of Rapidly-exploring
Random Trees (RRT). By utilizing VLMs to extract high-
level semantic information from environmental snapshots,
our approach directs sampling toward regions with a higher
likelihood of containing feasible paths. This targeted bias
significantly enhances both sampling efficiency and path
quality. Our experimental evaluation demonstrates notable
improvements in navigation performance compared to con-
ventional sampling-based methods, highlighting the advan-
tage of integrating VLM-based perception-driven guidance
into motion planning. Future work will explore tighter inte-
gration between large language models (LLMs) and path-
planning algorithms, focusing on how recent advances in
reasoning models can further enhance autonomous decision-
making and planning capabilities.
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