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Abstract
With an ever increasing number of unmanned aerial vehicles (UAVs) in flight, there is a pressing need for scalable and 
dynamic air traffic management solutions that ensure efficient use of the airspace while maintaining safety and avoiding 
mid-air collisions. To address this need, a novel framework is developed for computing optimized 4D trajectories for UAVs 
that ensure dynamic and flexible use of the airspace, while maximizing the available capacity through the minimization of 
the aggregate traveling times. Specifically, a network manager (NM) is utilized that considers UAV requests (including start/
target locations) and addresses inherent mobility uncertainties using a linear-Gaussian system, to compute efficient and safe 
trajectories. Through the proposed framework, a family of mathematical programming problems is derived to compute control 
profiles for both distributed and centralized implementations. Extensive simulation results are presented to demonstrate the 
applicability of the proposed framework to maximize air traffic throughput under probabilistic collision avoidance guarantees.

Keywords  Unmanned autonomous vehicles · Motion planning · Cooperative autonomous driving

1  Introduction

Current air traffic management (ATM) architectures have 
strictly-constrained configuration options that limit their 
ability to efficiently manage the traffic demand. In doing 
so, the true capacity of the network remains unexplored. 
This problem is further exacerbated by the increasing 

introduction of UAVs which impose significantly more fluc-
tuating demands in the utilization of the airspace. Hence, a 
radically different solution for ATM is needed to fully opti-
mize the network flows and exploit the total capacity of the 
available airspace.

To address this challenge a fully dynamic ATM concept is 
developed that takes into consideration all capacity/demand 
aspects and mobility constraints to deliver a unified math-
ematical framework for computing optimized 4D, i.e., in 
space and time, trajectories. Notably, various alternative 
optimization strategies exist for collision avoidance among 
UAVs, broadly categorized in: (i) centralized or distributed 
4D UAV trajectory computation exploiting deterministic 
motion models to ensure minimum distance between UAVs, 
e.g., [4] and [1], and (ii) sequential algorithms accounting 
for motion model uncertainties, e.g., [12, 26]. Neverthe-
less, techniques tackling cooperative objectives, such as 
the airspace capacity maximization in the presence of col-
lision avoidance guarantees have not still been adequately 
addressed [20].

Hence, in this work a novel modeling framework is 
presented that maximizes the capacity of a flying environ-
ment accounting for approximated UAV mobility states 
and creating collision-free areas for UAVs to use. To do so, 
future locations of the UAVs are estimated considering the 
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propagated location uncertainty, as a function of the possible 
controls applied. Due to this characterization, future control 
profiles can be selected for each vehicle so that collision-free 
areas (characterized by ellipsoids as elaborated later), never 
intersect with each other. Considering a linear-Gaussian sys-
tem for each UAV’s motion model, this safety constraint is 
easily transformed into a time-dependent minimum distance 
between the ellipsoid barycenters (centroids). The resulting 
feasibility region (area outside the ellipsoids) is non-convex, 
leading to hard optimization problems. Thus, relaxations are 
made by introducing worst-case piecewise linear, hence con-
vex, constraints to reduce complexity.

Overall, two alternative mobility control strategies suf-
fice: (i) the Distributed Optimum: UAVs are ordered 
randomly at the moment of the optimization and controls 
are decided sequentially; (ii) the Centralized Opti-
mum: the controls of all UAVs in the flying environment are 
decided jointly, i.e., in a coordinated manner at a central 
entity, the NM. In both cases, an elegant optimization prob-
lem is presented to choose among all control profiles satisfy-
ing the aforementioned safety constraint, aiming to minimize 
the aggregated flying time. This metric was chosen to maxi-
mize the capacity of the flying environment, since it equiva-
lently maximizes the UAVs’ average speed, hence avoiding 
the selection of controls that allow UAVs to wait for the fly-
ing environment to become free before moving. In addition 
to the optimal formulations, a family of sub-optimal Mixed 
Integer Quadratically Constrained Programs (MIQCPs), 
with the integer variables being binary variables, denoted as 
Distributed and Centralized Dodecahedron, 
are derived to address the aforementioned complexity of the 
concavity of the feasible region. Following this relaxation, 
valid upper bounds on the performance of the Distrib-
uted and Centralized Optimum are also derived. 
Summarizing, the contributions of this paper are:

–	 a novel framework for safe airspace capacity maximiza-
tion, accounting for UAVs motion model uncertainty;

–	 the transformation of collision probability constraints 
into safe distance between UAVs’ barycenters (cen-
troids). For the case of the linear-Gaussian UAVs motion 
model, such transformation allows selecting jointly the 
UAVs controls, for the first time avoiding the typical 
assumption of known-a-priori UAV trajectories;

–	 a real-time solution for UAV flying time minimization, 
i.e., our Distributed Dodecahedron approach;

–	 the first optimization jointly selecting UAV controls to 
maximize cooperatively, in small scenarios, the airspace 
capacity (Centralized Dodecahedron).

The rest of the paper is organized as follows. Section 2 
reviews the state-of-the-art, Section 3 presents the sys-
tem model, while Section 4 showcases the optimization 

framework underlying the Centralized and Dis-
tributed Optimum solutions. Section 5 introduces the 
Centralized and Distributed Dodecahedron 
heuristics and a valid upper-bound is derived. Section 6 
unveils the potential of the introduced Centralized and 
Distributed Dodecahedron optimizations, includ-
ing also a comparison with the upper-bound on the optimal 
solution in several instances. Finally, Section 7 concludes 
the work and provides avenues for future research.

2 � Related Work

A recent detailed survey on the topic can be found in [17]. 
In [23], the authors propose a method to design provably 
safe conflict resolution maneuvers between two aircraft by 
modeling the aircraft and the maneuvers as a hybrid con-
trol system and in [10], a protocol-based 2D conflict reso-
lution method for multiple aircraft is presented. Although 
this approach exhibits an analytical solution, it assumes that 
aircraft can change headings instantaneously and requires 
synchronous maneuvers (i.e., all aircraft to change headings 
at the same time), while [22] extends this approach for 3D.

In a similar vein, the authors in [15] propose a decentral-
ized collision avoidance policy for guiding multiple vehicles 
towards their assigned goal regions. Although this approach 
is scalable and completely decentralized, it does not account 
for random disturbances and unexpected events. Moreover, 
the authors in [4] pose the multi-UAV conflict resolution 
problem as an optimal control problem that minimizes a 
certain objective function, while maintaining safe distances 
among the UAVs. This method, however, is purely deter-
ministic and does not consider the stochasticity of the model 
dynamics. Similarly, the methodology proposed in [1] uses 
model predictive control (MPC) to generate collision-free 
trajectories between networked vehicles with deterministic 
dynamics. The authors use Lagrangian relaxation to convert 
their non-convex centralized formulation into a convex semi-
definite program which can be solved more efficiently. Addi-
tionally, the work in [5] presents a collision-free formation 
control method based on MPC, in which a collision avoid-
ance cost function is added to the UAV’s objective function 
as a penalty term to prevent it from colliding with nearby 
UAVs. In [7], the problem of multi-agent safe trajectory 
planning with collision avoidance constraints has been for-
mulated as a sequential decision making problem and solved 
using deep reinforcement learning, while [14] proposes a 
Markov Decision Process (MDP)-based short-term conflict 
avoidance algorithm for an automated unmanned ATM sys-
tem. The approach in [14] generates advisories for each air-
craft to follow, and is based on decomposing a large multi-
agent Markov decision process and fusing the solutions. 
More recently, the work in [2] also proposes an MDP-based 
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trajectory planner for the problem of multi-agent distrib-
uted trajectory planning in the presence of cooperative and 
non-cooperative actors in a high-density free flight airspace. 
Similarly, the work in [25] develops a message-based decen-
tralized guidance algorithm which allows multiple aircraft to 
be safely guided to their destinations, while avoiding poten-
tial conflicts among them.

For non-deterministic UAVs motion models, the more 
relevant works include [13], in which a stochastic optimal 
control method is proposed for designing conflict-free 3D 
trajectories by considering the uncertainties during flight. 
Specifically, a probabilistic conflict detection algorithm is 
proposed based on a generalized polynomial chaos method 
and the resulting nonlinear programming problem is solved 
using sequential quadratic programming. More recently, in 
[26], a chance-constraint nonlinear MPC problem is pre-
sented for the distributed generation multi-UAV collision-
free trajectories to minimize single-UAV controls, and in 
[12], multi-robot motion planning based on distributed 
model predictive control minimizes the UAVs’ energy con-
sumption. Apart from using different objectives, [12, 26] 
also introduce a potential field cost to violate, if required, 
the safe distance, without ensuring a bound on the maximum 
collision probability between UAVs at all times, as is done 
in our work.

While all these aspects are interesting, in the presence 
of model uncertainty, neither collective objectives, such 
as maximizing the airspace capacity (or equivalently 
minimizing the aggregate flying time), nor a solution 
with a guaranteed bound on collision probability have 
been considered.

3 � System Model

This work assumes that a total of M UAVs communicate 
with a NM, asking permission to travel in a bounded 3D 
environment. A UAV’s motion model follows the discrete-
time linear dynamics below [12]:

where xjt = [xj, ẋj]⊤
t
∈ ℝ

6 denotes the state of the jth UAV 
at time t which consists of position xjt = [px, py, pz]

j

t ∈ ℝ
3 

and velocity ẋjt = [𝜈x, 𝜈y, 𝜈z]
j

t ∈ ℝ
3 components in 3D Car-

tesian coordinates. Each UAV j is controllable through 
u
j

t = [u
j
x, u

j
y, u

j
z]
⊤
t
∈ ℝ

3 which denotes the applied force (con-
trol) vector at time t, and 𝛼j

t = [a
j
x, a

j
y, a

j
z]
⊤
t
∈ ℝ

3 ∼ N(0,𝛴
j
𝛼) 

denotes the perturbing acceleration noise, due to uncon-
trolled forces acting on the UAV, e.g., unwanted accelera-
tions due to wind, drawn from a zero mean multivariate 
normal distribution with covariance matrix � j

� [11]. The 
matrices � , Γ , and G are further given by:

(1)x
j

t = �x
j

t−1
+ Γu

j

t−1
+ G�

j

t−1
, j ∈ [1, ...,M]

where �T  denotes the sampling interval, I3 and 03 are the 
identity matrix and zero matrix of dimension 3 × 3 , respec-
tively, and parameters � and � are given by � = (1 − �) and 
� =

�T

mj
 , where � is used to model the air resistance and mj 

denotes the mass of UAV j. As shown in Eq. 1, the UAV 
dynamics obey the Markov property i.e., the state of a UAV 
at the next time step depends only upon its current state and 
control input. That said, given a known initial state x0 and a 
sequence of control inputs u[0∶T−1] over the planning horizon 
of T time-steps, the state xt, t ∈ [1, ..., T] of the UAV can be 
computed by recursive application of Eq. 1 as:

where the agent (UAV) index j is omitted for notational clar-
ity. Subsequently, the UAV trajectory XT = {xt}, t ∈ [1, ..., T] 
over the planning horizon is a stochastic process, where each 
future state xt is distributed according to xt ∼ N(�t,Ξt) with 
𝜇t = [�, �̇]⊤

t
 and Ξt obtained as [8]:

where Q = G𝛴𝛼G
⊤ is the covariance of the zero mean 

Gaussian disturbance acting on the system. Interestingly, the 
covariance matrix Ξt does not depend on the applied controls 
u[0∶T−1] , and can be easily pre-computed. As a consequence, 
selecting the controls for a UAV only modifies the average 
�t of the predicted system state, not its distribution. Further-
more, computing recursively �t , the average of the predicted 
system state only depends linearly on the applied controls.

Figure 1 summarizes the approaches used in this work 
to select the controls of the UAVs in the flying environ-
ment, i.e., the Distributed Optimum and the Cen-
tralized Optimum techniques. The adopted distrib-
uted control approach is based on the work in [19, 24], 
which is applied in a certain class of control problems that 
exhibit dynamically decoupled sub-systems with coupled 
constraints. In summary, this large planning optimization 
problem is divided into smaller sub-problems and the sub-
problems are solved in sequence, e.g., following the order of 
the UAVs’ entry time in the flying zone, by the distributed 
controllers located at the UAVs. Optimization plans are then 
communicated between the distributed controllers in order 
to guarantee the satisfaction of the coupled constraints. This 
procedure is usually referred to in the literature as sequen-
tial distributed control (or non-cooperative distributed con-
trol) and requires a form of coordination (i.e., ordering) to 
decide the UAVs’ plans [6]. In our implementation, the NM 

(2)� =

[
I3 �T ⋅ I3
03 � ⋅ I3

]
,Γ =

[
03

� ⋅ I3

]
,G =

[
0.5�T2 ⋅ I3
�T ⋅ I3

]

(3)xt = �tx0 +

t−1∑

�=0

��
[
Γut−�−1 + G�t−�−1

]
,∀t

(4)𝜇t = 𝛷tx0 +

t−1∑

𝜏=0

𝛷𝜏Γut−𝜏−1, Ξt =

t−1∑

𝜏=0

𝛷𝜏Q(𝛷⊤)𝜏
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acts as a coordinator, selecting the sequence used to decide 
the UAVs’ controls, as well as forwarding messages among 
UAVs, in case of possible obstructions in the flying envi-
ronment. For what concerns the adopted centralized control 
approach, the NM sets simultaneously the control profiles 
of all UAVs in the 3D flying zone. Choosing at the same 
time all controls uj

[0∶T−1]
 , ∀j , even though it increases the 

computational complexity, allows to greatly improve the 
optimization of collaborative objective functions, as in this 
work. Indeed, in both the proposed optimizations, the objec-
tive is to minimize the UAVs’ aggregate flying time between 
starting and target locations. Collaboratively, UAVs can syn-
chronize their trajectories, leaving enough space between 
them to maneuver, thus increasing the overall capacity of 
the flying environment.

4 � An Optimization Framework for UAV 
Collision‑free Trajectory Planning

In this section, our first contribution is presented. Specifically, 
a novel framework for safe airspace capacity maximization that 
accounts also for UAVs’ motion model uncertainty is show-
cased. Initially, a method to transform motion model uncer-
tainty into collision probabilities and subsequently into a mini-
mum safe distance among UAVs is presented (Section 4.1). 
Then, the two possible optimizations aiming at minimizing 
the UAVs’ aggregate flying time whilst determining safe flying 
trajectories are introduced: (i) the Distributed Opti-
mum (Section 4.2), and (ii) the Centralized Optimum 
(Section 4.3). Implicitly, minimizing the UAVs’ flying time 
maximizes the capacity of the flying environment, since, in 

the obtained solutions, UAVs reach their target locations as 
quickly as possible, without waiting for the flying environment 
to become free before moving.

4.1 � Transforming Target Collision Probability 
into a Safe Distance Among UAVs

To account for possible collisions during the UAV’s path 
planning, the 3D-area containing the barycenter of a UAV 
with probability 1 − � , with � arbitrarily small, is modeled as 
an ellipsoid based on the UAV’s location distribution. The 
underlying idea is that, if, at any time t, the minimum dis-
tance between two points lying on the ellipsoids containing 
the barycenters of UAVs i and j is at least dmin > 0 , then the 
probability of collision between the two UAVs is bounded. 
Specifically, the two UAVs may collide only if at least one of 
them is outside the ellipsoid. Hence, the maximum probability 
of collision Pc between i and j is:

Distance dmin accounts for the dimensions of the UAVs 
and inter-UAV safe distance, i.e., dmin = di+dj+s , where dx 
represents the maximum distance between the barycenter 
and the chassis of UAV x, while s is the minimum safe 
distance between UAVs. The description of such ellip-
soids follows well-known statistical results, which take 
into account the numerical integration of the distribution 
of a UAV’s location [18]. Specifically, the 3 × 3 sub-matrix 
of Ξt , denoted hereinafter as Mt , is considered, describing 
the multi-variate Gaussian distribution �t of the UAV’s 
barycenter location.

(5)Pc = 1 − (1 − �)2 = 2� − �2 ≤ 2�

Fig. 1   Trajectory planning proposed: (a) Distributed approach; UAVs 
decide their trajectory autonomously, following a sequential order and 
(b) Centralized approach; the NM receives UAVs’ system state esti-
mations and decides jointly future trajectories in the flying environ-
ment. As a result, UAVs leave enough space between them to maneu-

ver, thus increasing the overall capacity of the flying environment. As 
explained in the following, spheres represent the areas containing the 
barycenters of UAVs with fixed probability. As derived in Eq. 4, per-
turbation noise is such that the uncertainty grows with time
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The three semi-axes of the ellipsoid containing the loca-
tion of the UAV’s barycenter with probability 1 − � are then:

where �t,1 , �t,2 , and �t,3 are the eigenvalues of Mt , and K� 
is the inverse of the cumulative density function (CDF) of 
the chi-squared distribution having three degrees of free-
dom computed at 1 − � [18]. In order for any two points of 
the ellipsoids to respect the minimum distance dmin at any 
time t, a sufficient distance di,jt  between the expected UAVs’ 
barycenters is imposed. Then, selecting control profiles such 
that the expected barycenter locations �i

t
 and �j

t respect di,jt  
ensures obtaining UAV trajectories with a bounded collision 
probability. For this task, the geometry space is exploited; 
initially, in order to simplify the computations, each ellipsoid 
is first approximated with a sphere with radius rt equal to

Thus, any point in the ellipsoid is also in the sphere, and the 
probability of having the barycenter of the UAV within the 
sphere is larger than 1 − � . Note that, if all elements of �� 
assume the same value and �� is diagonal, then the ellipsoid 
and sphere descriptions correspond exactly. At this stage, the 
full description of the spheres describing each UAV’s loca-
tion is not available, since their center location �t depends 
on the unknown controls. Nevertheless, imposing

ensures, as required, that any two points on the two spheres, 
hence on the ellipsoids as well, are at least dmin away. The 
computation of di,jt  thus enables the transformation of a con-
straint on maximum collision probability into a minimum 
safe distance between the spheres’ barycenters.

4.2 � Minimizing Flying Time with a Distributed 
Approach

This section describes how control profiles for the UAVs 
are selected sequentially following a random order, i.e., the 
Distributed Optimum, with the objective of mini-
mizing the UAVs’ flying time. In this optimization, UAVs 
for which controls have been already selected, i.e., UAVs 
{1, ..., j − 1} , broadcast their expected future locations �t . 
Thanks to such information, UAV j can safely decide its 
own controls. For UAV j, the present and future locations of 
other UAVs act as obstructions, whose locations are known 
at any time t. Such approach can be easily adapted to a situ-
ation where UAVs enter and leave the flying environment at 
different times, assuming that the trajectories of the UAVs 
are selected following a temporal arrival order.

at,1 =
√

K��t,1; at,2 =
√

K��t,2; at,3 =
√

K��t,3;

(6)rt = max(at,1, at,2, at,3).

(7)d
i,j
t = ri

t
+ r

j

t + dmin, ∀t

For notational clarity, the flying zone is a cube of edge 
size l, centered at [0, 0, 0]. The target area for UAV j is 
represented by a cube of edge size lj

G
 , centered around the 

target location [pGx, pGy, pGz]j . An auxiliary binary variable 
b
j

t is 0 when UAV j is inside its target cube, and 1 otherwise. 
Hence, the overall objective of minimizing the flying time 
is presented as the minimization of the auxiliary variables 
b
j

t , ∀t , in the 3D flying zone.

In the Distributed Optimum, the absolute values pre-
sent in Eqs. 8c-8d can be easily transformed into a series 
of additional linear constraints [21], without impairing the 
computational complexity of the proposed approach. Hence, 
Eqs. 8c-8d are linear constraints used to set the value of the 
auxiliary binary variables bjt . In case UAV j is not at the 
target location at time t, in order for the constraints to be 
satisfied, the binary variable bjt , multiplied by a large con-
stant M, is forced to 1. On the contrary, as soon as UAV j 
is at the target location, the constraints are satisfied without 
the help of M and the binary variable bjt may turn to 0. In 
fact, as the objective of the Distributed Optimum is 
to minimize the summation of the auxiliary binary variables 
(i.e., a linear function), as soon as UAV j is at the target loca-
tion, the binary variables actually do turn to 0. That is to say, 
the objective function (Eq. 8a) represents the overall time 
spent by UAV j outside of its target zone. Furthermore, bj

T
 is 

equal to 0, ensuring that UAV j has reached its target loca-
tion within the optimization horizon T. Also, Eq. 8b imposes 

(8a)
������� ����������� ������� ∶

min
u
j

[0∶T−1]

∑

t

b
j

t

(8b)
subject to:

�
j

t as in (4) ∀t

(8c)|[�k]
j

t − [pGk]
j| ≤ l

j

G
∕2 + b

j

tM k ∈ {x, y, z},∀t

(8d)b
j

t ∈ {0, 1}, b
j

T
= 0 ∀t

(8e)|[�x]
j

t|, |[�y]
j

t|, |[�z]
j

t| ≤ l∕2 ∀t

(8f)|ujt| ≤ uMAX ∀t

(8g)|ujt − u
j

t−1
| ≤ Δu ∀t

(8h)|�̇j

t| ≤ vMAX ∀t

(8i)|�j

t − �
i
t
| ≥ d

i,j

t ∀i < j,∀t
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that system state predictions respect the discrete-time linear 
dynamics as in Eq. 4. Furthermore: (i) Eq. 8e can be easily 
transformed in a set of linear constraints [21] that forces 
UAV j within the 3D flying area over the planning horizon; 
(ii) Eq. 8f is a convex quadratic constraint in the control 
variables of UAV j that limits the module of applied forces 
to uMAX ; (iii) Eq. 8g is a convex quadratic constraint that, 
in order to achieve feasible control sequences, imposes a 
maximum difference Δu between consecutive controls; (iv) 
Eq. 8h is a convex quadratic constraint that limits the mod-
ule of the expected UAVs’ speed to vMAX . Finally, Eq. 8i 
keeps the probability of collision between UAVs i and j 
under a given threshold, imposing that the expected distance 
between their barycenters is larger than di,jt  , as defined in 
Eq. 7. Substituting Eq. 4 into Eq. 7, such quadratic constraint 
can be easily transformed into the form:

with u being the set of future controls for UAVs i and j, 
and with L and c constants allowing to express Eq. 7 in 
matrix form [16]. Nevertheless, given the larger or equal 
sign of the constraint on the UAV barycenters’ distance, 
the optimization has an overall concave feasibility region in 
the unknown variables ujt . Given the presented formulation, 
the Distributed Optimum is a non-convex MIQCP, 
where the integer variables are binary variables, that cannot 
be solved optimally in real time.

4.3 � Minimizing Flying Time with a Centralized 
Approach

In this section, the Centralized Optimum is presented. 
In this version of the optimization, the NM is the one selecting 
the controls for the UAVs with the objective of minimizing the 
UAVs’ aggregate flying time.

(9)
1

2
uTLu + cTu ≥ (d

i,j
t )

2

(10a)
������� ����������� ������� ∶

min
u
j

[0∶T−1]
,∀j

∑

j

∑

t

b
j

t

(10b)
subject to:

�
j

t as in (4) ∀j,∀t

(10c)|[�k]
j

t − [pGk]
j| ≤ l

j

G
∕2 + b

j

tM k∈{x, y, z},∀j, t

(10d)b
j

t ∈ {0, 1}, b
j

T
= 0 ∀j,∀t

(10e)|[�x]
j

t|, |[�y]
j

t|, |[�z]
j

t| ≤ l∕2 ∀j,∀t

The structure and the constraints of Centralized 
Optimum are very similar to Distributed Optimum. 
The main difference is that all UAVs’ controls are now opti-
mization variables (all UAVs’ locations are expressed as a 
linear function of the controls as in in Eq. 10b). UAVs do 
not act any more as moving obstacles, but their trajectories 
are selected jointly to minimize a collaborative objective 
function, i.e., the aggregate flying time (Eq. 10a). This is 
obtained through the use of the auxiliary binary variables 
b
j

t , ∀j , i.e., the linear constraints derived by Eqs. 10c-10d, 
which, thanks to the same reasoning presented for the Dis-
tributed Optimum, are equal to 1 if UAV j is outside 
the target area at time t and 0 otherwise. Again, each of 
the feasible solutions ensures that all UAVs reached their 
destination within the optimization horizon T (Eq. 10d), 
ensuring that the M requests reside in the capacity region of 
the flying environment. As in the Distributed Opti-
mum, bounds are defined on the forces applied to the UAVs 
and to the UAVs’ speed, i.e., Eqs. 10f-10h. Also, UAVs’ 
expected locations respect the boundaries of the 3D flying 
zone (Eq. 10e) and the minimum safe distance di,jt  , ∀i, j ∈ M 
(Eq. 10i). This constraint can be transformed, as expressed in 
Eq. 9, into a quadratic constraint in the control variables of 
UAVs i and j, ∀i, j ∈ M (i.e., in a set of linear coupled con-
straints). Hence, transforming the target collision probability 
into a safe minimum distance among UAVs allows to jointly 
select the trajectory of all UAVs in the system simultane-
ously, even in presence of UAVs’ system state uncertainty. 
Given the presented formulation, due to the concave nature 
of the feasibility region, the Centralized Optimum is 
a non-convex MIQCP, where the integer variables are binary 
variables, that cannot be solved optimally in real time.

5 � A Near‑Optimal Approximation 
for the Distributed and Centralized 
Optimums

In this section, the formulation of the Centralized 
and Distributed Optimum is approximated to reduce 
complexity, while obtaining near-optimal solutions. First, an 
approach is presented that convexifies the feasibility region 

(10f)|ujt| ≤ uMAX ∀j,∀t

(10g)|ujt−u
j

t−1
| ≤ Δu ∀j,∀t

(10h)|�̇j

t| ≤ vMAX ∀j,∀t

(10i)|�j

t − �
i
t
| ≥ d

i,j

t ∀i, j ∈ M,∀t
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of these optimizations (Section 5.1) and then, this approach 
is applied to obtain: (i) a real-time solution for UAV flying 
time minimization, i.e., the Distributed Dodecahe-
dron approach (Section 5.2); and (ii) a novel optimization 
that jointly selects UAV controls to maximize cooperatively, 
in small scenarios, the airspace capacity, i.e., the Cen-
tralized Dodecahedron (Section 5.3). Finally, in 
order to compare the obtained results with the corresponding 
original formulations, the same approach is used to obtain a 
valid upper-bound to the Centralized and Distrib-
uted Optimum (Section 5.4).

5.1 � A Higher Dimensional Space to Convexify 
the Centralized and Distributed 
Optimum Feasibility Regions

The complexity of the original optimization problems is due 
to the concave safety constraint (Eqs. 8i, 10i), that ensures a 
collision probability less than or equal to 2� , for each pair of 
UAVs i, j ∈ M , and for each time slot t in the optimization 
horizon of UAVs i and j. Such constraint, i.e., the 2-norm of 
the difference between UAVs’ barycenters, can be depicted 
as a sphere of radius di,jt  , centered at one of the two UAVs’ 
barycenters, that the other UAV cannot enter. Depending on 
the previously presented optimizations, the center of such 
a sphere is: (i) pre-computed, as in the Distributed 
Optimum, or (ii) unknown at the time of optimization, i.e., 
a linear combination of the UAV controls (Eq. 4), as in the 
Centralized Optimum.

To help reduce computational complexity, in both cases, 
the 2-norm constraint can be approximated by a piecewise 
linear region representing a regular polyhedron circum-
scribing the sphere. By definition, the new set of linear con-
straints originating by the circumscribed polyhedron always 
ensure that the distance between UAVs’ barycenters is at 
least di,jt  . Considering that all the remaining constraints are 
not modified, this tighter constraint ensures that the obtained 
feasibility region is completely included in the feasibility 
region of the optimum formulations, hence leading to a sub-
optimal (but easier to achieve) solution.

In the following, a regular dodecahedron circumscribing 
the sphere originating from the constraints in Eqs. 8i and 
10i is constructed for each pair of UAVs i and j and for each 
time t, but any other polyhedron could also be used. Specifi-
cally, the inradius of the dodecahedron, i.e., the radius of 
the inscribed sphere that is tangent to each of the dodeca-
hedron’s faces, is equal to di,jt  . A dodecahedron centered at 
�
i
t
 exhibits 12 pentagonal faces and 20 vertices (for both the 

case where �i
t
 is known at the moment of the optimization, 

as in the Distributed Optimum, and the case where 
�
i
t
 is a linear function of the UAV’s i controls, as in the 

Centralized Optimum). These 20 vertices are formed 
as the union of the vertices of a cube and the vertices of 
3 rectangles on the yz, xz, and xy planes, all appropriately 
scaled and oriented, with Cartesian coordinates given by:

where v1 =
√
3−�

�
d
i,j
t  , v2 = (

√
3 − �)d

i,j
t  , and v3 =

√
3−�

�2
d
i,j
t  , 

with the constant � being the golden ratio, equal to � =
1+

√
5

2
.

An illustrative example of how the circumscribed dodeca-
hedron is built is shown in Fig. 2. In Fig. 2(c), the difference 
between the original constraint, the sphere, and its approxi-
mation, i.e., the dodecahedron, represents also the difference 
between the original feasibility region and the feasibility region 
obtained with the introduced approximation. That said, if the 
estimated location of UAV j is outside the dodecahedron at 
time t, then it is also outside the original sphere, respecting 
constraints in Eqs. 8i) and 10i. In order for UAV j to reside 
outside the dodecahedron, it is sufficient that the estimated 
location of UAV’s j barycenter is outside of at least one of the 
planes including a face of the dodecahedron. To obtain such a 
result, a big-M approach, similar to the one that is used in [3] to 
avoid static polyhedron obstacles, is introduced. First, for each 
of the half-spaces originating by the faces of the dodecahedron 
where the UAV can reside, a linear constraint is presented:

where �
k
= (ak1, ak2, ak3) is the outward normal vector to 

the kth face of the dodecahedron, ck is the dot product of 
the outward normal with a known point on the kth face, 
and n = 12 is the total number of faces of the dodecahe-
dron. Equation 15 can also be written more compactly as 
A
i,j
t (�

j

t − �
i
t
) ≤ C

i,j
t  , where Ai,j

t  is a n × 3 matrix, and Ci,j
t  is a 

n × 1 vector.
Then, a big-M method ensures that at least one of the intro-

duced constraints is respected. Specifically, let bi,jt  be a binary vec-
tor where each of the elements, i.e., bi,jt (p) with p ∈ {1, ..., 12} , is 
summed at the right-hand side of one of the linear constraints in 
Eq. 15 after being multiplied by a large constant M, i.e.,:

(11)Cube ∶ ([�x]
i
t
± v1, [�y]

i
t
± v1, [�z]

i
t
± v1)

(12)Rectangle on yz ∶ ([�x]
i
t
, [�y]

i
t
± v2, [�z]

i
t
± v3)

(13)Rectangle on xz ∶ ([�x]
i
t
± v3, [�y]

i
t
, [�z]

i
t
± v2)

(14)Rectangle on xy ∶ ([�x]
i
t
± v2, [�y]

i
t
± v3, [�z]

i
t
)

(15)

a11([�x]
j

t−[�x]
i
t
)+a12([�y]

j

t−[�y]
i
t
)+a13([�z]

j

t−[�z]
i
t
)≤c1

a21([�x]
j

t−[�x]
i
t
)+a22([�y]

j

t−[�y]
i
t
)+a23([�z]

j

t−[�z]
i
t
)≤c2

⋮

an1([�x]
j

t−[�x]
i
t
)+an2([�y]

j

t−[�y]
i
t
)+an3([�z]

j

t−[�z]
i
t
) ≤ cn

Page 7 of 15    11Journal of Intelligent & Robotic Systems (2022) 106: 11

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1 3

Subsequently, thanks to the introduced big-M method, in 
case bi,jt (p) = 1 , the corresponding linear constraint is not 
active, since it is always respected. When bi,jt (p) = 0 , instead, 
the constraint is active and the UAV is forced in one of the 
half-spaces outside of the dodecahedron. Hence, if for each 
pair of UAVs i, j and for each t, the summation of the binary 
variables in bi,jt  is less than the number of the faces of the 
polyhedron used to approximate the 2-norm constraint of 
the original formulation, the obtained trajectories reside 
outside the dodecahedron and the original safety constraint 
is respected.

5.2 � The Distributed Dodecahedron 
Optimization

The presented approximation of the safety constraint is 
initially applied explicitly to the Distributed Opti-
mum, resulting in the Distributed Dodecahedron.

(16)A
i,j
t (�

j

t − �
i
t
) ≤ C

i,j
t + b

i,j
t M.

(17a)
������� ����������� ������������ ∶

min
u
j

[0∶T−1]

∑

t

b
j

t

(17b)
subject to:

�
j

t as in Eqn. (4) ∀t

(17c)|[�k]
j

t−[pGk]
j| ≤ l

j

G
∕2+b

j

tM k∈{x, y, z},∀t

(17d)b
j

t ∈ {0, 1}, b
j

T
= 0 ∀t

(17e)|[�x]
j

t|, |[�y]
j

t|, |[�z]
j

t| ≤ l∕2 ∀t

(17f)|ujt| ≤ uMAX;|u
j

t−u
j

t−1
| ≤ Δu ∀t

(17g)|�̇j

t| ≤ vMAX ∀t

Fig. 2   (a)-(b) Dodecahedron at 
the origin constructed by con-
necting the vertices of a cube 
(orange) with the vertices of 3 
rectangles in the yz (green), xz 
(blue) and xy (pink) planes, all 
properly scaled and oriented, 
(c)-(d), respectively, circum-
scribed and inscribed dodeca-
hedron about the sphere with 
radius di,jt
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In the Distributed Dodecahedron, Eqs. 17b-17g are 
the same as Eqs. 8b-8h in the Distributed Optimum, 
representing (i) the flying time computation via binary aux-
iliary variables, (ii) the linear relationship between controls 
and UAV system state; (iii) limits on controls, and (iv) limits 
on UAV j’s speed. Eqs. 17h-17j represent the set of linear 
constraints introduced by the approximation described in 
Section 5.1 to substitute the quadratic constraint in Dis-
tributed Optimum, i.e., Eq. 8i. Specifically, Eq. 17h 
represents the linear constraints originated by the 12 faces of 
the dodecahedron used to approximate the 2-norm between 
UAVs j and i, with i < j . Note that at the time of the optimi-
zation, UAV j’s location is unknown, but it can be expressed 
as a linear function of the controls (Eq. 17b). Given the pre-
sented formulation, the Distributed Dodecahedron 
is a convex MIQCP, where the integer variables are binary 
variables, with a number of unknowns (i.e., the control vari-
ables uj

[0∶T−1]
 and the indirectly tunable binary variables bi,jt  ) 

and constraints that grow linearly with the planning window 
T and with the number of UAVs in the flying environment.

The key aspect of the proposed approach is a reduced 
complexity compared to Distributed Optimum, at 
the expense of a sub-optimal result, since the feasibility 
region is only approximated. The approach is modular, and 
performance can be traded with computational complex-
ity, if required. For example, the number of planes used to 
approximate the safety quadratic constraint can be reduced, 
while the objective function computation could be easily 
parallelized for fairly short optimization horizon T. Indeed, 
it should be noted that the possible combinations of values 
assumed by the binary variables in the objective functions 
are very limited, i.e., 1 when out of the target area, 0 in the 
target area. Therefore, a set of optimizations, one for each 
possible flying time for UAV j, could be run in parallel, lead-
ing to an achievable real-time solution.

5.3 � The Centralized Dodecahedron 
Optimization

Finally, the presented approximation is applied to the Cen-
tralized Optimum problem and the following sim-
plified Centralized Dodecahedron optimization is 
obtained.

(17h)A
i,j

t (�
j

t − �
i
t
) ≤ C

i,j

t + b
i,j

t M ∀i < j,∀t

(17i)b
i,j

t (p) ∈ {0, 1} b
i,j

t (p) ∈ b
i,j

t ,∀i < j,∀t

(17j)
12∑

p=1

b
i,j

t (p) < 12 ∀i < j,∀t

The Centralized Dodecahedron problem presents the 
same flying time computation, limits on controls, UAV’s speed, 
and relationship between controls and UAV system state that 
are present in the Centralized Optimum problem (see 
Eqs. 18b-18h and Eqs. 10b-10h, respectively). The main dif-
ference with the Distributed Dodecahedron approxi-
mation is that the positions of all UAVs are unknown at the 
moment of the optimization in Centralized Dodecahe-
dron (even though they can be expressed as a linear function 
of the controls). Hence, the set of linear constraints originated 
by the approximation of the 2-norm with the dodecahedron, i.e., 
Eqs. 18i-18k as explained in Section 5.1, substitutes the safety 
constraint in Eq. 10i for each pair of UAVs.

Given the presented formulation, the Central-
ized Dodecahedron is a convex MIQCP, where 
the integer variables are binary variables. Contrary to 

(18a)
������� ����������� ������������ ∶

min
u
j

[0∶T−1]
,∀j

∑

j

∑

t

b
j

t

(18b)
subject to:

�
j

t as in Eq. (4) ∀j,∀t

(18c)|[�k]
j

t − [pGk]
j| ≤ l

j

G
∕2 + b

j

tM k∈{x, y, z},∀j, t

(18d)b
j

t ∈ {0, 1}, b
j

T
= 0 ∀j,∀t

(18e)|[�x]
j

t|, |[�y]
j

t|, |[�z]
j

t| ≤ l∕2 ∀j,∀t

(18f)|ujt| ≤ uMAX ∀j,∀t

(18g)|ujt−u
j

t−1
| ≤ Δu ∀j,∀t

(18h)|�̇j

t| ≤ vMAX ∀j,∀t

(18i)A
i,j

t (�
j

t − �
i
t
) ≤ C

i,j

t + b
i,j

t M ∀i, j ∈ M,∀t

(18j)b
i,j

t (p) ∈ {0, 1} b
i,j

t (p) ∈ b
i,j

t ,∀i, j ∈ M,∀t

(18k)
12∑

p=1

b
i,j

t (p) < 12 ∀i, j ∈ M,∀t
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the Distributed Dodecahedron, the number of 
unknowns and constraints grows linearly with the planning 
window T and combinatorially with the number of UAVs 
in the flying environment, ultimately limiting the applica-
bility of the approach to fairly small scenarios. Neverthe-
less, the improvement in airspace capacity shown by the 
Centralized Dodecahedron is large, as it is shown 
below, motivating the introduction of the proposed solution. 
Possible scalability improvements, which will be the focus 
of future research efforts, could be achieved by splitting sys-
tematically large flying environments, as suggested in [25], 
or by applying iterative consensus-based approaches.

5.4 � Upper Bound 
on the Distributed/Centralized 
Optimum

In order to compare the results obtained approximating the 
2-norm between the UAVs’ estimated locations as a circum-
scribed polyhedron in reasonably large instances, an upper 
bound on the performance of the Centralized and Dis-
tributed Optimum is obtained. The approach follows 
the same philosophy as in Section 5.1 and is denoted as 
Centralized and Distributed Bounds. To obtain 
such an upper bound on the Optimum formulations, the 
2-norm between the UAVs’ estimated locations, i.e., the 
sphere representing the minimum distance to respect 
between any two UAVs, is now approximated as an inscribed 
regular polyhedron. Considering, as in Section 5.1, that all 
the remaining constraints are not modified, this leads to a 
looser set of constraints, where the feasibility region of the 
Bounds formulations is completely included in the feasibil-
ity region of the Centralized and Distributed 
Optimums. An example of such an approach is reported in 
Fig. 2(d). In this case, the inscribed dodecahedron (i.e., a 
dodecahedron touched by the sphere at all vertices) is built 
starting from the union of the vertices of a cube and the 
vertices of 3 rectangles on the yz, xz, and xy planes as in 
Eq. 11, where v1 =

1√
3
d
i,j
t  , v2 =

�√
3
d
i,j
t  , and v3 =

1√
3�
d
i,j
t  . 

Substituting the set of linear-binary constraints originated 
by the approximation of the 2-norm with the dodecahedron 
approximation mentioned above, the formulations of the 
Centralized and Distributed Bound problems 
could be easily obtained as in Sections 5.2 and 5.3.

6 � Performance Evaluation

This section evaluates the performance of the Central-
ized and Distributed Optimum approximations. 
First, the reference scenario is illustrated (Section 6.1). 
Then, Section 6.2 presents a detailed explanation, in a toy 

scenario, of how choosing cooperatively the controls of the 
UAVs changes the chosen trajectories, compared to a dis-
tributed approach. Next, in Section 6.3, the performance of 
the Centralized and Distributed Bound is com-
pared with the performance of the approaches proposed in 
this work.

6.1 � Simulation Set‑Up

To showcase the performance of the proposed approaches, 
the solutions have been obtained using the GUROBI 
solver [9] and a computing platform with 8 GB RAM and 
2.6 GHz CPU frequency. Furthermore, the input set-up used 
in the simulations, if not differently stated, is as follows. A 
cube of side equal to 30m is used (i.e., l = 30 m) as the 3D 
flying environment. The size of the chosen flying environ-
ment is small, as suggested by [25]. Such choice keeps the 
number of simultaneously admitted UAVs fairly limited, 
allowing to compare the performance achieved by Dis-
tributed and Centralized Dodecahedron. The 
sampling time is equal to 1s and T = 20 (hence the opti-
mization horizon is 20s). Starting and target locations are 
selected at random from the same pool of possible loca-
tions, i.e., the corners and the center of each face of the 
cube representing the flying zone, forcing UAVs to cross, 
in general, the entire flying area. Any other scenario could 
also be adopted, including also scenarios where UAVs enter 
the flying environments at different times. Nevertheless, the 
chosen scenario increases the probability of having possibly 
colliding trajectories, hence better showcasing the capabili-
ties of the proposed approaches. Specifically, taking as refer-
ence the side of the flying environment located at the posi-
tive half-space of the abscissa, the starting/target locations 
are: [ l

2
,
l

2
,
l

2
] , [ l

2
,
l

2
, 0] , [ l

2
,
l

2
,−

l

2
],[ l

2
, 0,

l

2
] , [ l

2
, 0, 0] , [ l

2
, 0,−

l

2
] , 

[
l

2
,−

l

2
,
l

2
] , [ l

2
,−

l

2
, 0] , [ l

2
,−

l

2
,−

l

2
] . Similarly, starting/target 

locations are individuated in all six faces of the flying envi-
ronment. Further, while the starting location corresponds to 
the aforementioned locations, the selected 3D target area is 
cubic, with a side equal to lj

G
= 2 m. Also, UAVs select, with 

uniform distribution, the module of their initial speed in the 
interval [0, 5]m/s, with their directions towards the center of 
the flying zone. The initial UAVs’ system states, constituted 
by the initial location and speed on the 3D Cartesian coor-
dinates as described above, are known with no uncertainty. 
Limits on speed and controls are Δu = 1 N, umax = 10 N, and 
vmax = 14m/s ( ∼ 50km/h), while the probability of having 
the barycenter of the UAV within the ellipsoid described 
in Section 4.1 is 1 − � = 0.99999 . Furthermore, the motion 
model is characterized by: (i) the air resistance coefficient 
� = 0.8 , and (ii) the UAV mass mj = 3kg. Finally, the uncer-
tainty of the system state prediction due to the perturbing 
acceleration noise is � j

� = [0.1, 0.1, 0.1]m/s2.
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6.2 � A Toy Example

To better understand how the simultaneous selection of the 
controls of UAVs changes their trajectories, an illustrative 
example is presented, for a flying environment with now 
l = 60 m. The starting points of four UAVs are [± l

2
,±

l

2
, 0] , 

i.e., the center of the faces perpendicular to the x − y plane 
of the 3D flying environment. Each UAV traverses the flying 
environment and arrives at the center of the face opposite 
to its starting location (which is also the starting location of 
another UAV).

In order to select the controls within T, the Central-
ized and the Distributed Dodecahedron enforce, 
at any time t, at least dmin = 2 m between the ellipsoids con-
taining the barycenters of the UAVs. In the Centralized 
Dodecahedron controls are selected simultaneously for 
all UAVs and in the Distributed Dodecahedron, 
UAVs are ordered randomly and controls are selected 
sequentially.

Figure 3 summarizes the trajectories obtained for the 
UAVs (dots illustrate the UAVs’ expected locations at each 
time slot and dot size increases as time passes). Initially, 
Figs. 3(a) and (d) show the trajectories of 2 UAVs for the 
Distributed and Centralized Dodecahedron, 
respectively. It is shown that with the Distributed 
Dodecahedron, UAV 2 simply avoids UAV 1, which 
has previously selected the fastest route to the destination 
while with the Centralized Dodecahedron, the two 
UAVs modify (symmetrically) their trajectories so as to have 
a small deviation from the fastest route to the destination, 
effectively reducing the aggregate flying time by 1s.

Similarly, Figs. 3(b) and (e) show the trajectories of 3 
UAVs. In both the Distributed and Centralized 
Dodecahedron UAV 3 avoids UAVs 1 and 2 by passing 
below their expected trajectories. However, in the Cen-
tralized Dodecahedron UAVs 1 and 2 perform 
small arcs (sufficiently separated), allowing UAV 3 to reduce 
its flying time, thus reducing the aggregate flying time by 2s 
compared to Distributed Dodecahedron.

Finally, Figs. 3(c) and (f) show the trajectories of 4 UAVs. 
In Distributed Dodecahedron, UAV 4 cannot fly 
over or below the rest of the UAVs (as other UAVs already 
chose those trajectories), thus it moves towards the center 
of the 3D environment, waiting for UAV 1 to pass, before 
crossing towards its destination area. In Centralized 
Dodecahedron, instead, UAVs cooperatively adjust their 
trajectories, reducing the aggregate flying time by 3s as com-
pared to Distributed Dodecahedron (over a total of 
62s aggregate flying time).

It is noted that the chosen trajectories respect Eqs. 18i-
18k, ensuring that the pair-wise collision probability is 
less than 2� . To showcase such result, the Central-
ized Dodecahedron with 4 UAVs is used (Fig. 3(f). 

Comparing at each time slot the trajectories obtained from 
the Centralized Dodecahedron optimization, 
Table 1 reports the expected minimum distance between 
each pair of UAVs, showing that each UAV passes at ∼ 14 m 
from two of the three other UAVs (with the pairs of UAVs 
1-3 and 2-4 passing even further away from each other, at 
∼ 18m).

The control profiles for the UAVs in the Central-
ized Dodecahedron optimization are then applied (in 
the presence of the perturbing acceleration noise) to evaluate 
the actual trajectories of the UAVs. Considering a large set 
(i.e., 100k) of simulations, Fig. 4 presents the empirical PDF 
of the minimum distance between each pair of simulated 
UAVs. As expected, the results show the presence of two 
main peaks at around 14 and 18 meters, i.e., the minimum 
distance among UAVs when the expected trajectories are 
considered. Interestingly, the minimum distance between 
UAVs in all simulations is 7.04m, i.e., larger than dmin in 
all cases. These results show that the computed empirical 
approximation of the collision probability (equal to 0 in our 
simulations) respects its theoretical bound, i.e., 2� as com-
puted in Eq. 5 for the proposed heuristics.

6.3 � Performance Results of the Heuristics

This section presents the flying environment’s capacity 
achieved by the different approaches, with the simulation 
parameters of Section 6.1. Two different metrics are used to 
assess the performance of the introduced approaches: (i) the 
empirical cumulative density function (CDF) of the number 
of UAVs admitted before obtaining an infeasible solution, 
when the UAVs are introduced to the 3D flying environment 
sequentially; (ii) the average and the 20 − 80th percentile of 
the time needed by the UAVs to reach their destinations, 
depending on the number of UAVs in the 3D flying environ-
ment. For a fair comparison amongst the approaches, the 
same initial conditions and the same starting/target locations 
are used.

Table 2 presents the number of UAVs admitted to the 3D 
environment, before obtaining an infeasible solution from 
the solver. Up to 8 UAVs request access to the flying area 
from the NM, sequentially, in 100 simulations with different 
starting/target locations. As demonstrated in Table 2, the 
Distributed Dodecahedron struggles to achieve 
a large number of admitted UAVs (hence the limit of 8 
UAVs used), since the control decisions are not taken coop-
eratively, but rather independently for each UAV. Selecting 
cooperatively the controls of the UAVs improves perfor-
mance, as it is clear from the results achieved by Central-
ized Dodecahedron and by Centralized Bound. 
Indeed, Centralized Dodecahedron admitted on 
average 7.79 UAVs, i.e., 31.81% more compared to Dis-
tributed Dodecahedron (which admitted 5.91 UAVs 
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on average). Furthermore, Centralized Dodecahe-
dron and Centralized Bound perform similarly for 
the scenario under consideration.

Figure 5 presents the average and the 20-80th percentile of 
the UAVs flying time distribution. As expected, increasing 

Fig. 3   Trajectories obtained 
with Distributed and Cen-
tralized Dodecahedron 
for a toy example with 2,3, and 
4 UAVs
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the number of UAVs in the system increases the contention 
in the flying environment and consequently the average fly-
ing time of the UAVs. Nevertheless, such increase is less 
evident with Centralized Dodecahedron, since 
the UAV trajectories adapt cooperatively to accommodate 
the new incoming UAVs. Such behavior is also evident by 
looking at the 80th percentile of the distribution. While the 
80th percentile of the Distributed Dodecahedron’s 
flying time increases considerably, thus increasing the num-
ber of UAVs in the environment (the last incoming UAVs 
need to avoid several moving obstacles, hence increasing 
their flying times), the 80th percentile of the Central-
ized Dodecahedron approach is unaffected, as UAVs 
find cooperatively new trajectories for accommodating 
all requests without increasing, when possible, their fly-
ing times. Again, for this metric, the difference between 
Centralized Dodecahedron and Centralized 
Bound is small, demonstrating that the presented approach 
is nearly optimal.

Finally, in order to show how the Distributed 
Dodecahedron handles scenarios with a higher number 
of UAVs, Fig. 6 presents the average and the 20-80th per-
centile of the flying time distribution in two larger flying 
environments. Specifically, the two selected flying environ-
ments have sides l = 70 m and l = 100 m, respectively, with 
starting and target positions also at the center of each cube 

Table 1   Minimum inter-UAV distance - Centralized Dodeca-
hedron 

UAV Pair Min. Dist. (m) UAV Pair Min. Dist. (m)

1-2 13.1 2-3 14.73
1-3 18.4 2-4 18.65
1-4 13.96 3-4 15.05

Fig. 4   Empirical PDF of the minimum inter-UAV distance (toy exam-
ple)

Table 2   CDF of the number of 
UAVs admitted in the 3D flying 
environment before obtaining 
an infeasible solution

Num. UAV 1 2 3 4 5 6 7 8

Distributed Dodec. 0.04 0.1 0.13 0.19 0.28 0.52 0.83 1
Centralized Dodec. 0 0 0 0 0 0.05 0.16 1
Centralized Bound 0 0 0 0 0 0 0.03 1

Fig. 5   Average and 20-80th percentile of the time required by UAVs 
to reach their intended destinations

Fig. 6   Larger simulation set-up. Average and 20-80th percentile of 
the time required by UAVs to reach their intended destinations with 
Distributed Dodecahedron Optimization
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side (25 total maximum flying UAVs). Additionally, to cope 
with larger distances to travel, the optimization window is 
now equal to N = 25 . Because of the larger flying environ-
ment (hence a larger capacity also for the Distributed 
Dodecahedron), in all 100 simulations all UAVs (all 
25 of them) found a possible trajectory to their target loca-
tions. To further demonstrate that the flying environment can 
accommodate all the UAVs (due to its larger size), the aver-
age and the 20-80th percentiles do not increase significantly 
while increasing the number of admitted UAVs, contrarily 
to what happens in the smaller simulation set-up (Fig. 5). As 
expected, between the two new simulation set-ups, the aver-
age flying time is larger when a larger flying environment is 
used, i.e., with l = 100 m.

7 � Conclusions

This work presented a novel framework for UAV 4D trajec-
tory planning for dynamic ATM that takes into considera-
tion the motion prediction uncertainty. With linear-Gaussian 
motion models, an ellipsoid around each UAV’s barycenter 
characterizes the area in the flying environment that contains 
(in the present and in the future), with a fixed probability, the 
UAV. Then, if the selected trajectories are such that ellip-
soids never intersect, a bound on the collision probability 
among UAVs can be guaranteed. Initially, a concave optimi-
zation able to plan the trajectory for each UAV in the system, 
i.e., the Optimum formulations, is presented. In order for 
the ellipsoids to not intersect, the proposed optimizations 
ensure a minimum dynamic distance (which depends on the 
uncertainty) between the barycenters of each pair of UAVs 
in the system.

Nevertheless, due to the concave nature of its feasibility 
region, the Optimum formulations’ complexity is such that 
no real-time solution is possible. To obtain a practical solu-
tion to the 4D trajectory planning problem, two heuristics 
are then proposed. In both cases, the quadratic constraint 
representing the minimum distance to respect between 
each pair of UAVs is approximated by a set of binary-lin-
ear constraints that helps to improve the tractability of the 
optimizations. First, a heuristic that can be used as a valid 
real-time performance benchmark is presented, i.e., the 
Distributed Dodecahedron, where UAVs’ controls 
are selected sequentially. Then, to improve performance, 
at least on small scenarios, a more complex heuristic that 
coordinates simultaneously all UAVs in the flying environ-
ment, i.e., the Centralized Dodecahedron, is also 
showcased. In the performed simulations, both the Dis-
tributed and the Centralized Dodecahedron 
demonstrated their utility. Indeed, the Distributed 
Dodecahedron presents high scalability capabilities, 

and is able to plan, in the presence of location uncertainty, 
trajectories for UAVs in dense scenarios. Choosing simul-
taneously the controls of UAVs, as in the Centralized 
Dodecahedron, instead, increases the capacity of small 
flying environments, presenting nearly-optimal performance 
at the price of additional complexity.

Future research includes the consideration of more com-
plex non-linear UAV motion models and novel approxi-
mations to improve the scalability of the Centralized 
Dodecahedron approach using techniques for partition-
ing the flying environment or consensus-based approaches.

Author Contributions  All authors contributed to the study conception 
and design in equal manner. Material preparation, analysis and imple-
mentation was performed by Christian Vitale and Savvas Papaioannou.

Funding  This work was supported by the European Union’s Hori-
zon 2020 Research and Innovation Programme under Grant 739551 
(KIOS CoE - TEAMING) and Grant 101003439 (C-AVOID), and by 
the Republic of Cyprus through the Deputy Ministry of Research, Inno-
vation and Digital Policy.

Data Availability  Not applicable

Code Availability  Not applicable

Declarations 

Conflicts of Interest  No Conflicts of interest

Ethics Approval  Not applicable

Consent to Participate  Not applicable

Consent for Publication  Not applicable

References

	 1.	 Alrifaee, B., Kostyszyn, K., Abel, D.: Model predictive control 
for collision avoidance of networked vehicles using Lagrangian 
relaxation. IFAC-PapersOnLine 49(3), 430–435 (2016)

	 2.	 Bertram, J., Wei, P.: Distributed computational guidance for high-
density urban air mobility with cooperative and non-cooperative 
collision avoidance. In: AIAA Scitech 2020 Forum (2020)

	 3.	 Blackmore, L., Ono, M., Williams, B.: Chance-constrained opti-
mal path planning with obstacles. IEEE Transactions on Robotics 
27(6), 1080–1094 (2011)

	 4.	 Borrelli, F., Subramanian, D., Raghunathan, A., Biegler, L.: MILP 
and NLP techniques for centralized trajectory planning of multiple 
unmanned air vehicles. In: Proc. American Control Conference 
(ACC), (2006) https://​doi.​org/​10.​1109/​ACC.​2006.​16576​44

	 5.	 Chao, Z., Zhou, S.L., Ming, L., Zhang, W.G.: UAV formation 
flight based on nonlinear model predictive control. Mathematical 
Problems in Engineering (2012)

	 6.	 Christofides, P.D., Scattolini, R., de la Pena, D.M., Liu, J.: Dis-
tributed model predictive control: A tutorial review and future 

11   Page 14 of 15 Journal of Intelligent & Robotic Systems (2022) 106: 11

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1 3

research directions. Computers & Chemical Engineering 51, 
21–41 (2013)

	 7.	 Everett, M., Chen, Y., How, J.: Motion planning among dynamic, 
decision-making agents with deep reinforcement learning. In: 
Proc. IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS) (2018)

	 8.	 Grinstead, C.M., Snell, J.L.: Introduction to probability. American 
Mathematical Soc. (1997)

	 9.	 Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual. 
https://​www.​gurobi.​com (2022)

	10.	 Hwang, I., Tomlin, C.: Protocol-based conflict resolution for 
finite information horizon. In: Proc. American Control Confer-
ence (ACC), https://​doi.​org/​10.​1109/​ACC.​2002.​10249​03 (2002)

	11.	 Lennart, L.: System identification: Theory for the user. Prentice 
Hall (1999)

	12.	 Luis, C.E., Vukosavljev, M., Schoellig, A.P.: Online trajectory 
generation with distributed model predictive control for multi-
robot motion planning. IEEE Robotics and Automation Letters 
5(2), 604–611 (2020). https://​doi.​org/​10.​1109/​LRA.​2020.​29641​
59

	13.	 Matsuno, Y., Tsuchiya, T.: Stochastic 4D trajectory optimization 
for aircraft conflict resolution. In: Proc. IEEE Aerospace Confer-
ence, (2014) https://​doi.​org/​10.​1109/​AERO.​2014.​68362​75

	14.	 Ong, H.Y., Kochenderfer, M.J.: Markov decision process-based 
distributed conflict resolution for drone air traffic management. 
Journal of Guidance, Control, and Dynamics 40(1), 69–80 (2017)

	15.	 Pallottino, L., Scordio, V., Bicchi, A., Frazzoli, E.: Decentralized 
cooperative policy for conflict resolution in multivehicle systems. 
IEEE Transactions on Robotics 23(6), 1170–1183 (2007). https://​
doi.​org/​10.​1109/​TRO.​2007.​909810

	16.	 Prajna, S., Papachristodoulou, A., Parrilo, P.: Introducing SOS-
TOOLS: A general purpose sum of squares programming solver. 
In: Proc. IEEE Conference on Decision and Control (CDC) (2002)

	17.	 Rădulescu, R., Mannion, P., Roijers, D.M., Nowe, A.: Multi-
objective multi-agent decision making: a utility-based analysis 
and survey. Autonomous Agents and Multi-Agent Systems 34(1), 
1–52 (2020)

	18.	 Ribeiro, M.I .: (Portugal) Gaussian probability density functions: 
Properties and error characterization. In: Institute for Systems and 
Robotics (ISR/IST) (2004)

	19.	 Richards, A., How, J.P.: Robust distributed model predictive con-
trol. International Journal of control 80(9), 1517–1531 (2007)

	20.	 SESAR Joint Undertaking. Supporting safe and secure drone 
operations in Europe. In: SESAR U-space Research and Innova-
tion Results (2020)

	21.	 Shanno, D.F., Weil, R.L.: “linear’’ programming with absolute-
value functionals. Operations Research 19(1), 120–124 (1971)

	22.	 Stanley, A.: Flight path deconfliction of autonomous UAVs. In: 
Infotech@Aerospace (2005)

	23.	 Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air 
traffic management: A study in multiagent hybrid systems. IEEE 
Transactions on Automatic Control 43(4), 509–521 (1998). 
https://​doi.​org/​10.​1109/9.​664154

	24.	 Trodden, P.A., Richards, A.G.: Cooperative tube-based distributed 
mpc for linear uncertain systems coupled via constraints. In: Dis-
tributed Model Predictive Control Made Easy, Springer, pp 57–72 
(2014)

	25.	 Yang, X., Wei, P.: Scalable multi-agent computational guidance 
with separation assurance for autonomous urban air mobility. 
Journal of Guidance, Control, and Dynamics 43, 1473–1486 
(2020)

	26.	 Zhu, H., Alonso-Mora, J.: Chance-constrained collision avoid-
ance for MAVs in dynamic environments. IEEE Robotics and 

Automation Letters 4(2), 776–783 (2019). https://​doi.​org/​10.​1109/​
LRA.​2019.​28934​94

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

Christian Vitale  holds a B.S. and a M.Sc., from the University of Pisa 
and a Ph.D. in Telecommunication Engineering from Universidad Car-
los III de Madrid. He is a Research  Associate at the KIOS Research 
and Innovation Center of Excellence at the University of Cyprus, 
where he received an Individual Widening Marie-Curie Fellowship. 
His interests mainly focus on analytical modeling of complex systems, 
e.g., wireless networks and intelligent transportation systems, design 
of mechanisms improving network efficiency, and algorithms for guar-
anteeing QoS to vertical applications in cellular environments.

Savvas Papaioannou  received the B.S. degree in Electronic and Com-
puter Engineering from the Technical University of Crete, Chania, 
Greece in 2011, the M.S. degree in Electrical Engineering from Yale 
University, New Haven, CT, USA, in 2013 and the Ph.D. degree in 
Computer Science from the University of Oxford, Oxford, U.K. in 
2017. He is currently a Research Associate with the KIOS Research 
and Innovation Center of Excellence, University of Cyprus, Nicosia, 
Cyprus. His research interests include multi-agent and autonomous 
systems, state estimation and control, multi-target tracking, probabil-
istic inference, Bayesian reasoning, and intelligent unmanned-aircraft 
vehicle (UAV) systems and applications. Dr. Papaioannou is reviewer 
for various journals within the IEEE and ACM associations.

Panayiotis Kolios  received the B.Eng. (2008) and Ph.D. (2011) degrees 
in Telecommunications Engineering from King’s College London. He 
is a Research Assistant Professor with the KIOS Research and Innova-
tion Center of Excellence, University of Cyprus. His interests focus 
on both basic and applied research on networked intelligent systems. 
Examples of such systems include intelligent transportation systems, 
autonomous unmanned aerial systems, and the plethora of cyber-phys-
ical systems that arise within IoT.

Georgios Ellinas  holds B.Sc., M.Sc., M.Phil., and Ph.D. degrees in 
Electrical Engineering from Columbia University. He is a Professor at 
the Department of Electrical and Computer Engineering and a founding 
member of the KIOS Research and Innovation Center of Excellence 
at the University of Cyprus. Prior to joining the University of Cyprus, 
he also served as an Associate Professor of Electrical Engineering at 
City College of the City University of New York, as a Senior Network 
Architect at Tellium Inc., and as a Research Scientist/Senior Research 
Scientist in Telcordia Technologies’ (formerly Bell Communications 
Research (Bellcore)) Optical Networking Research Group. Prof. Ellinas 
is a Fellow of the IET (2019), and a Senior Member of IEEE, OSA, and 
ACM. He has co-authored/co-edited four books on optical networks, 
more than 300 archived articles/conference papers/book chapters, and 
he is the holder of 30 patents on optical networking. His research inter-
ests are in the areas of optical networks, intelligent transportation sys-
tems, IoT, emergency response systems, and unmanned aerial systems.

Page 15 of 15    11Journal of Intelligent & Robotic Systems (2022) 106: 11

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1.

2.

3.

4.

5.

6.

Terms and Conditions
 
Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”). 
Springer Nature supports a reasonable amount of sharing of  research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial. 
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply. 
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy. 
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not: 
 

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.
 
In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository. 
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved. 
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose. 
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties. 
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at 
 

onlineservice@springernature.com
 

mailto:onlineservice@springernature.com

