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Abstract—In this paper we propose a novel Deep Rein-
forcement Learning (DRL) approach for controlling multiple
Unmanned Aerial Vehicles (UAVs) with the ultimate purpose
of tracking multiple First Responders (FRs) in challenging 3D
environments in the presence of obstacles and occlusions. We
assume that the UAVs receive noisy distance measurements from
the FRs which are of two types i.e., Line of Sight (LoS) and
Non-LoS (NLoS) measurements and which are used by the UAV
agents in order to estimate the state (i.e., position) of the FRs.
Subsequently, the proposed DRL-based controller selects the
optimal joint control actions according to the Cramér-Rao Lower
Bound (CRLB) of the joint measurement likelihood function to
achieve high tracking performance. Specifically, the optimal UAV
control actions are quantified by the proposed reward function
which considers both the CRLB of the entire system and each
UAV’s individual contribution to the system, called global reward
and difference reward, respectively. Since the UAVs take actions
that reduce the CRLB of the entire system, tracking accuracy
is improved by ensuring the reception of high quality LoS
measurements with high probability. Our simulation results show
that the proposed DRL-based UAV controller provides a highly
accurate target tracking solution with a very low run-time cost.

Index Terms—Multi-agent deep reinforcement learning, multi-
target tracking, unmanned aerial vehicle

I. INTRODUCTION

Nowadays, Unmanned Aerial Vehicles (UAVs) have become
a promising technological platform offering high mobility,
flexible deployment, and low cost [1, 2]. Thanks to the
aforementioned advantages, UAVs are widely operated in
various application scenarios such as wireless communication
support [3–5], surveillance [6], delivery [7, 8] and Search
And Rescue (SAR) [9–11]. That said, SAR missions could
be extremely challenging and dangerous. Nowadays, SAR
missions respond to devastations caused by floods, storms,
maritime accidents, earthquakes, hazardous materials releases,
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Fig. 1. An illustration of multiple UAVs system for first responders tracking.
During the SAR mission, multiple UAVs track the first responders in a three-
dimensional environment and receive noisy distance measurements from the
first responders. UAVs adjust their position in order to estimate the state of
first responders accurately.

etc. The first responders (FRs) often face various risky and
dangerous situations, and they are required to work in areas
where public services are unavailable and the infrastructure
is destroyed and disrupted (e.g., during floods with downed
power lines and gas leaks). Motivated by this, we believe
that a team of autonomous mobile agents (e.g., UAVs) could
become an important aid in many SAR missions by accurately
tracking the FRs in the aforementioned challenging conditions.
A robust and accurate multi-UAV tracking system for SAR
missions not only can provide the required level of safety to the
FRs but also allows for better organization and coordination of
the rescue team, thus minimizing the need to place the rescuers
in danger situations.

Various sensors, such as lidars and cameras, are nowadays
mounted on UAVs to enable FRs with comprehensive envi-
ronmental perception and help them successfully complete
their missions. Cameras mounted on UAVs are mainly used
to detect and track people, objects or natural disasters (e.g.,
wildfire, flood, earthquake). Frequently, the target position
is detected and estimated by image processing and deep
learning [12, 13] techniques. UAVs can also be equipped
with RF sensors to provide, Received Signal Strength (RSS),
Round-Trip Time (RTT), and Time of Arrival (TOA) type of
measurements which are combined with filtering techniques to
enable advanced navigation and target localization capabilities
[14–17].
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In this work, we are interested in the control of multiple
UAVs for accurately tracking multiple FRs in the disaster
environment. As illustrated in Fig. 1, we consider a scenario
where a group of UAVs is used to track multiple FRs in the
ground in order to assist the SAR mission. We assume that
the FRs carry id-linked radio transmitters such as Bluetooth or
Ultra-Wideband (UWB) tags. The UAVs receive the FRs radio
transmissions and use this information to accurately localize
them. We assume that the environment comprises of obsta-
cles, occlusions and large structures, thus the measurements
received by the UAVs at any time can be of two types namely
Line of Sight (LoS) and Non-LoS (NLoS) measurements. The
objective of this work is to control the UAV team operating in
the aforementioned challenging conditions in order to provide
optimized tracking of the FRs (i.e., the targets).

The target tracking performance can be quantified by the
Cramér-Rao Lower Bound (CRLB), which is used in estima-
tion theory to derive a lower bound of the variance of an
unbiased estimator. In the localization system analysis, the
CRLB implies that the localization error at a given position is
greater than or equal to X meters given the conditions in the
region of interest, including the number of the signal sources,
the geometry of the RF receiver and the sources, and the
statistical characteristics of the measurements [18]. In other
words, the CRLB becomes larger (i.e., higher localization error
should be expected) when fewer measurements are available to
estimate the FRs position or when the geometry of the UAVs
is not suitable. Hereafter, we intend to combine CRLB with
Deep Reinforcement Learning (DRL) to decide the control
actions of multiple UAVs in order to achieve accurate multi-
target tracking.

Reinforcement Learning (RL) is a type of machine learn-
ing algorithm that considers how agents take decisions in
an environment. By introducing the neural network as a
function approximator in the training stage, DRL overcomes
traditional RL shortcomings with a finite number of states
and actions [19]. Interestingly, there have been several efforts
regarding the application of DRL to multiple UAV systems in
recent years, including network security [20], communication
optimization [21–23], and target tracking and navigation [24–
27]. Motivated by the recent advances in DRL techniques
and applications, in this work we propose a novel control
framework which combines the theory of DRL with the theory
of state estimation through the utilization of CRLB. Specifi-
cally, we design a novel reward function for our DRL-based
framework which in each time-step quantifies the achievable
CRLB according to the applied joint UAV control actions.
That said, through the agent-environment interaction, multiple
UAVs learn an optimal policy that enhances the tracking
performance and maximizes expected cumulative reward. Con-
sequently, the UAVs adjust their trajectories to optimize the
target state estimation by selecting the joint control actions,
which achieve the lower CRLB.

The main contributions of this paper are the following:
• We propose the first DRL-CRLB based framework to

control multiple UAVs in such a way so that multiple FRs
are being optimally tracked in challenging 3D environ-
ments in the presence of both LoS and NLoS conditions.

• We design a novel reward function using the CRLB of
the target state estimator. The total reward is composed
of sub-rewards, which account for the CRLB of the entire
system and the individual contribution of each UAV,
thus enabling the proposed DRL framework to learn the
optimal policy.

• We verify the proposed approach through extensive simu-
lation experiments and compare it with existing solutions.

The rest of this paper is organized as follows. Section II
reviews the related work on UAV control and target tracking.
Section III introduces the background of the Markov Decision
Process (MDP), DRL, and dueling network. Section IV de-
scribes the system model. The CRLB for FRs state estimator is
presented in Section V. Section VI introduces our DRL-based
multiple UAV control system for target tracking. Section VII
presents the simulation results in the performance evaluation.
Finally, Section VIII provides concluding remarks.

II. RELATED WORK

In this section we summarize the most relevant works to the
problem tackled in this paper. Specifically, we discuss the most
recent UAV trajectory optimization and DRL-based techniques
for UAV control, and we briefly summarize the main target
tracking techniques, which have been used in related problems.

In recent years, some works on the trajectory optimization
for the UAV-aided networks have been studied. The authors
of [28, 29] propose a multiple rechargeable UAVs control
technique in order to provide seamless and long-term services
to the ground nodes. In [28], multiple UAVs adjust their
trajectories, transmit power, and the node assignment by
solving the UAVs configuration optimization problem, which
is represented by the nonconvex problem. In [29], multiple
UAVs determine their deployment and charging strategy using
Discrete Particle Swarm Optimization (DPSO) algorithm. The
authors of [30] propose the time-efficient UAV trajectory
optimization techniques to collect traffic data from the roadside
unis. To solve the problem, they introduce meta-heuristic
methods Genetic Algorithm (GA) and harmonic search, and
compare the performance of two methods.

A variety of approaches have been proposed for DRL-
based UAV trajectory control to fit various applications. For
instance, in order to secure the UAV transmitter against
being wiretapped, UAV jammers send jamming signals to
eavesdroppers by adjusting flying direction, transmit power
level, and jamming power level [20]. By exploiting the du-
eling Deep Q-Network (DQN), multiple UAVs adjust their
movement to maximize downlink capacity, covering ground
terminals [21]. In [22, 23], an energy-efficient UAV control
method is proposed. Each of the UAVs selects its flying direc-
tion and distance, considering the communications coverage,
fairness, and connectivity. For the problem of UAVs control
for target tracking and navigation, in [24], authors consider
that persistent target tracking is a challenging task in an urban
environment since a UAV equipped with a camera has a
limited Field of View (FOV). They construct a DQN, called
target following DQN, with finite action space and design
a reward function that considers whether a target is within
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the FOV or not. In [25], a UAV path planning scheme is
proposed for target tracking and obstacle avoidance. Deep
Deterministic Policy Gradient (DDPG) allows a UAV to be
operated in continuous action space by combining DQN with
an actor-critic algorithm, which utilizes two networks (actor-
network and critic-network) to determine the best action and
evaluate the selected action, respectively. The reward function
is designed considering the angle between the UAV and target
and how smooth the UAV trajectory is. In [26, 27], DRL
enables a single UAV to navigate from origin to destination by
continuously controlling the UAVs’ flight distance and direc-
tion. They consider the agent’s state as sensory measurements,
including angle and distance between the UAV’s position and
destination. Whenever a UAV executes the selected action, it
receives a non-sparse reward, which considers the distance
between the UAV and destination/obstacle [26]. On the other
hand, a UAV only receives a sparse reward when it reaches
its destination [27].

Regarding the single target tracking problem, authors in
[15] propose a UAV motion planning algorithm for target’s
state estimation. The Unscented Kalman Filter (UKF) is used
to estimate the target state, while UAV trajectory, including
acceleration and turn rate, is determined by the motion planner.
In [14], an Extended Kalman Filter (EKF)-based target track-
ing technique is proposed. A single UAV estimates a moving
target state and then predicts the optimal trajectory from the
estimated target’s state. In the presence of multiple targets,
recursive Bayesian filtering is used to formulate the multiple
target searching and tracking problem [17]. Multiple UAVs
manage their trajectories for searching and tracking, depending
on whether the target is detected. In [16], the authors exploit
the Gaussian Mixture Probability Hypothesis Density filter to
estimate the number of targets and track target trajectories.
This solution deals with complex environments, where the
number of targets is unknown and varying.

In this work, we address the multiple UAVs control problem
for tracking multiple targets. The proposed DRL-based con-
troller constructs a deep dueling Q-network with continuous
state space and discrete action space and applies a particle
filter to estimate the multiple target states.

III. BACKGROUND

Here, we introduce the background of MDP, DRL, and
dueling network.

A. MDP Formulation

We model the proposed UAV control problem as MDP. An
MDP is defined as a tuple {S,A,P,R, γ} which consists
of five elements, i.e., states, actions, transition probabilities,
rewards, and discount factor. The state in a state space S
should be observable from the environment. The action in an
action space A is determined by the agent’s movement. The
state and action space of MDP can be either continuous or
discrete. In this paper, we consider the state space is continu-
ous, and the action space is discrete. A set of state transition
probability P = {p(sk+1 | sk, ak) | sk, sk+1 ∈ S, ak ∈ A}
is made up of the transition probability p(sk+1 | sk, ak),

which is defined by the distribution of the next state sk+1

given the current state sk and taken action ak. When the
agent takes action ak at the state sk, the agent receives a
reward r(sk, ak) from a set of rewards for all possible state-
action pairs R = {r(sk, ak) | sk ∈ S, ak ∈ A}. The last
element γ ∈ [0, 1] is the discount factor, which indicates the
current value for the reward obtained in the future. A policy
π = p(ak|sk) is a mapping from the agent’s state to action
and gives the probability of selecting a candidate action at the
current state sk [31].

The agent observes its state sk ∈ S from the environment
and takes action ak ∈ A according to policy. The interaction
between agent and environment can be represented by trajec-
tory (s0, a0, r0, s1, a1, r1, . . . ). The cumulative discounted
reward, called return, is given by:

Gk = Rk + γRk+1 + γ2Rk+2 + · · · =
∞∑
τ=0

γτRk+τ . (1)

The value function (state-value function) Vπ(s, a) at state s is
the expected return when the state is s under policy π, and it
is given by:

Vπ(s) = Eπ[Gk | sk = s] = Eπ

[ ∞∑
τ=0

γτRk+τ | sk
]
. (2)

The Q-value function (action-value function) under policy π
is defined as the expected return for taking action a in state
s, and it is represented as follows:

Qπ(s, a) = Eπ[Gk | sk = s, ak = a] (3)

= Eπ

[ ∞∑
τ=0

γτRk+τ | sk, ak
]
. (4)

The value function and Q-value function have a relation-
ship of Vπ(s) = Ea∼π(s)[Qπ(s, a)]. The advantage function
represents the importance of each action, defined by the
value function and Q-value function. The advantage func-
tion subtracts the value function from the Q-value function
Aπ(s, a) = Qπ(s, a) − Vπ(s), and have a relationship of
Ea∼π(s)[Aπ(s, a)] = 0.

B. Deep Reinforcement Learning

The objective of RL is to find an optimal policy π∗ to max-
imize the Q-value function. The optimal Q-value function Q∗

is the maximum expected return achievable from a given state-
action pair, obtained using Bellman’s optimality equation [32]:

Q∗(sk, ak) = arg max
π

E
[∑
τ≥0

γτRk+τ | sk, ak, π
]

= E
[
R+ γmax

ak+1

Q∗(sk+1, ak+1) | sk, ak, π
]
.

(5)

For MDP with a finite number of states and actions, the
optimal Q-value function can be approximated by updating
Q-table iteratively, where rows represent the potential states,
and columns represent actions.

However, the table-based Q learning is difficult to apply to
large-scale problems with continuous state or action because
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of the memory capacity caused by a lot of states and actions.
Likewise, our multiple UAVs control problem cannot be rep-
resented as table-based Q learning because the state space of
multiple UAVs is infinite.

To solve this problem, DRL introduces a deep neural
network Q(sk, ak; θ) to approximate optimal Q-value function,
where the parameter θ is the weights of a neural network,
named Q-network. During DRL training stage, the agent’s
transition (sk, ak, rk, sk+1) is stored into a replay memory
D. To achieve sufficient learning, minibatches are randomly
drawn from the replay memory to adjust Q-network weight
rather than using the batches of consecutive samples. The Q-
network is updated by minimizing the loss function, which is
given by:

Loss(θ) = Esk,ak,rk,sk+1

[
(yk −Q(sk, ak; θ))2

]
, (6)

with

yk = r(sk, ak) + γmaxQ−(sk+1, ak+1; θ−), (7)

where the target value yk is a summation of reward of state-
action pair r(sk, ak) and the maximum discounted Q-value of
the target network Q−, which is parameterized by the weights
of the target network θ−. The weight of the target network θ−

is updated by Q-network θ every N timesteps.

C. Dueling Deep Q-network

In this paper, we utilize a dueling architecture to achieve
robust estimates of Q-value function. The dueling architecture
decouples Fully Connected (FC) layers into two streams
rather than using a single stream of FC layers, i.e., original
deep Q network. In dueling architecture, one stream of FC
layers is a value function estimator V (sk; θ, θβ) that outputs a
scalar, and the other stream is an advantage function estimator
A(sk, ak; θ, θα) that outputs a |A|-dimensional vector. Here,
θα and θβ denote weights of the advantage function estimator
and the value function estimator, respectively. According to the
advantage function definition, these two streams are combined
to calculate the Q-value function, as follows:

Qπ(s, a) = Vπ(s) +Aπ(s, a). (8)

However, Q(sk, ak; θ, θα, θβ) is the only parameterized esti-
mate of the Q-value function. Moreover, it is impossible to
obtain Vπ(s) and Aπ(s, a) uniquely for a given Qπ(s, a). To
solve this issue, we modify the combination of the two streams
to obtain the Q function as follows:

Q(sk, ak; θ, θα, θβ) =

V (sk; θ, θβ) +

(
A(sk, ak; θ, θα)− max

a
′
k∈A

A(sk, a
′

k; θ, θα)

)
.

(9)

Due to the above modification, the advantage function es-
timator A(sk, ak; θ, θα) has zero advantage for the selected
action. Besides, for a∗ = arg maxa′∈AQ(sk, ak; θ, θα, θβ) =
arg maxa′∈AA(sk, ak; θ, θα), we get Q(sk, a

∗
k; θ, θα, θβ) =

V (sk; θ, θβ).

Alternatively, the Q-value function is obtained by replacing
the max operator with an average as follows [33]:

Q(sk, ak; θ, θα, θβ) =

V (sk; θ, θβ) +

(
A(sk, ak; θ, θα)− 1

|A|
∑
a
′
k∈A

A(sk, a
′

k; θ, θα)

)
.

(10)

Hence, the stream V (sk; θ, θβ) of FC layers estimates the
value function, and the other stream A(sk, ak; θ, θα) provides
the estimate of the advantage function.

IV. SYSTEM MODEL

In this section we outline the modeling assumptions used
in the proposed framework. In particular we describe the first
responder dynamic model, UAV dynamic model, and the UAV
sensing model.

A. First Responder Dynamics

We assume that during a SAR mission there are N (where
N is known and fixed) first responders (i.e., targets) on the
ground that need to be tracked. At timestep k, the state vector
of the j-th target is represented by:

xjk = [xj , ẋj , ẍj , yj , ẏj , ÿj , zj , żj , z̈j ]ᵀk, (11)

where xj , yj , zj are Cartesian coordinates of the j-th target
position, ẋj , ẏj , żj denotes the speed of the j-th target along
the x, y, and z direction, and finally ẍj , ÿj , z̈j is the accel-
eration of the j-th target along the x, y, and z direction in
three-dimensional space.

During their operations the FRs encounter sudden and
unexpected changes in their motion patterns. In order to
account for this uncertainty, the dynamic model of the FRs
is composed of a command process vector νk = [νx, νy, νz]

ᵀ
k

and a random acceleration vector bk = [ẍ, ÿ, z̈]ᵀk , where the
total acceleration is ak = νk + bk. The command processes
νx,k, νy,k and νz,k take values from each set of the discrete
acceleration level Lx, Ly and Lz . The command process
vector νk is formulated as a Markov chain with a set of
finite states L = Lx ×Ly ×Lz = {v1, . . . , vL} and transition
probability Lll̄ = p(νk = vl̄ | νk−1 = vl), l, l̄ = {1, . . . , L}.
The transition probability is given by:

Lll̄ =

{
pl, if l = l̄

(1− pl)/(L− 1), if l 6= l̄
, (12)

The first Auto-Regressive (AR) model is adopted to repre-
sent the correlation feature of random acceleration, which is
given by [34]:

bk+1 = αΦbk + ωk, (13)

where αΦ ∈ (0, 1) is the reciprocal of the acceleration time
constant. The random acceleration vector ωk = [ωx, ωy, ωz]

ᵀ
k

is a multivariate normal distribution with ω ∼ N (03×1, σ
2
ωI3),

where I3 is an identity matrix of dimension 3× 3. Hence, the
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Fig. 2. Admissible control actions where UAV is at the origin and Nθ = 6.

dynamics of the j-th FR at timestep k can be expressed by
the following discrete-time system [35]:

xjk = Φxjk−1 + Γννk + Γωωk. (14)

where the matrices Φ, Γν , and Γω are represented as follows:

Φ =

 Φ̃ 03×3 03×3

03×3 Φ̃ 03×3

03×3 03×3 Φ̃

 , Γi =

 Γ̃i 03×1 03×1

03×1 Γ̃i 03×1

03×1 03×1 Γ̃i

 ,
(15)

Φ̃ =

1 ∆k ∆k2/2
0 1 ∆k
0 0 αΦ

 , Γ̃ν =

∆k2/2
∆k
0

 , Γ̃ω =

∆k2/2
∆k
1

 ,
(16)

where the subscript i of the matrix Γ̃i represents ν or ω, 03×1

is a zero matrix of dimension 3×1, and 03×3 is a zero matrix
of dimension 3× 3.

B. UAV Dynamics

We assume that a team of M UAVs operate in the environ-
ment and monitor the FRs. At timestep k, the state vector of
the i-th UAV is represented by ui =

[
uix,u

i
y,u

i
z

]ᵀ
k

. The UAV
dynamics are formulated as:

uik = uik−1 + an = uik−1 +

d cos (n∆θ)
d sin (n∆θ)

0

 , (17)

where d is a constant distance that the UAVs can move at
each timestep k and ∆θ = 2π/Nθ is the unit steering angle.
The action control an, n = {1, . . . , Nθ} denotes the flight
direction along x, y, and z axis. UAVs determine the flight
direction by choosing one action from discrete action space
{a1, a2, . . . , aNθ} ∈ A.

C. UAV Sensing Model

We consider that each UAV is equipped with a range sensor
that measures the distance between the i-th UAV and the j-
th target. UAVs receive distance measurements from ground

targets every timestep. The measurement model is represented
as follows:

yijk = h(cjk,u
i
k) + wijk = ‖cjk − uik‖2 + wijk , (18)

where cj = [xj , yj , zj ]ᵀ is the j-th target position, the function
h
(
cj ,ui

)
is euclidean distance of the i-th UAV, and the j-

th target, and wijk is measurement noise between the i-th
UAV and the j-th target. Due to various obstacles in the
environment, the UAVs receive LoS and NLoS measurements
from targets as shown in Fig. 1. For this reason, we model the
measurement noise wijk as [18, 36]:

wijk ∼
[
λij N (0, σ2

LoS) + (1− λij) N (µNLoS , σ
2
NLoS)

]
,

(19)

where N (0, σ2
LoS) denotes LoS measurement characteristics

i.e., as a Gaussian distribution with zero mean and variance
σ2
LoS andN (µNLoS , σ

2
NLoS) denotes the NLoS measurements

statistical profile i.e., as a Gaussian distribution with mean
µNLoS and variance σ2

NLoS . The measurement noise model is
thus a mixture model of LoS and NLoS components, and the
i-th UAV receives LoS component from the j-th target with
probability λij , which is formulated as follows:

λij = p(Θij) =
1

1 + α exp [−β(Θij − α)]
(20)

where Θij = arcsin
(
(uiz − zj) / ‖cj − ui‖2

)
is the elevation

angle between the i-th UAV and the j-th target. The two
parameters α and β, relate to the ratio of structured area to
total land area and the number of buildings per unit land area
[37].

V. CRAMÉR-RAO LOWER BOUND OF FIRST RESPONDERS
STATE ESTIMATOR

This section describes the CRLB of the FRs position, which
is the main criterion to quantify the system performance. Also,
we briefly introduce the optimal UAV joint control actions
according to the CRLB as discussed in [36].

A. CRLB of FRs Position
CRLB is a lower bound of variance on the unbiased

estimator, which represents achievable estimator performance.
The CRLB of all target positions is formulated by:

var(F̂k) ≥ tr(J−1(Fk)), (21)

where tr(·) means the trace of a square matrix, which is
the sum of the diagonal elements of the matrix, and Fk =
[c1
k, . . . , c

N
k ] is a vector that contains the all target position.

The Fisher information matrix (FIM) J(Fk) is given by [38]:

J(Fk) = −E
{
∂2 ln Λ(Yk | Xk)

∂F2
k

}
. (22)

The joint measurement likelihood function considering the
UAV sensing model presented in Subsection IV-C, is approx-
imated by a single Gaussian distribution as follows:

Λ(Yk | Xk) =
M∏
i=1

N∏
j=1

N (yijk | h(cjk,u
i
k) + µi,jk , (σ

ij
k )2),

(23)
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where Yk = yijk (i, j), i ∈ {1, . . . ,M}, j ∈ {1, . . . , N} is
distance measurement from the j-th target received by the i-
th UAV at timestep k, and Xk(j) = xjk, j ∈ {1, . . . , N} is the
j-th target state at timestep k. According to the UAV sensing
model, the mean and variance of the joint measurement are
given by:

µijk = (1− λijk )µNLoS , (24)

(σijk )2 = λijk (σ2
LoS − (µijk )2)

+ (1− λijk )(σ2
NLoS + µ2

NLOS − (µijk )2)
(25)

The joint measurement likelihood function can be repre-
sented by the log-likelihood function ln Λ(Yk|Xk):

M∑
i=1

N∑
j=1

{
ln

1√
2πσijk

− (yijk − h(cjk,u
i
k)− µijk )2

2(σijk )2

}
. (26)

According to derivation in [36], the FIM J(Fk) is represented
in the form of a block diagonal matrix:

J(Fk) = diag([J1,J2, . . . ,JN ]), (27)

The CRLB of all target state is expressed as the sum of each
target’s CRLB:

var(F̂k) ≥
N∑
j=1

tr(J−1
j ). (28)

B. UAVs Optimal Control Actions

CRLB-based control is described as an extension to a
greedy algorithm. At each timestep, candidate positions are
determined by the UAV’s current position and action space
A, defined in Subsection. IV-B. The CRLB for all candidate
positions is calculated using the predicted target position x̃k
since the actual target position is unknown. UAVs select
optimal action combination U∗k corresponding to minimum
CRLB among candidate positions, which is given by:

U∗k = arg min
Uk

N∑
j=1

tr
(

J−1
j,Uk

)
, (29)

where Uk = {a1
k, . . . , a

M
k } is a combination of UAV control

action, and Jj,Uk
represents FIM calculated by the j-th pre-

dicted target position and UAVs position changed by control
action Uk.

VI. THE PROPOSED DEEP REINFORCEMENT
LEARNING-BASED UAV TRAJECTORY CONTROL

We introduce a DRL-based multiple UAV control algorithm
for accurate target state estimation. First, we present details of
the DRL algorithm, including state, action, and reward design.
Then, we describe the target state estimation using Bayesian
filtering.

Figure 3 illustrates an overview of the DRL-based first re-
sponder tracking system. The system consists of two parts, FR
estimation and DRL-based controller part. The FR estimation
part is composed of time prediction stage and measurement
update stage, where the states of FRs predicted and corrected

according to the prediction density p(xk|Y1:k−1) and the
posterior distribution p(xk|Y1:k), respectively. In the time pre-
diction, the state of FRs x̃k are predicted using a probabilistic
model based on the target dynamics. After the time prediction
stage, the DRL-based controller operates in order to adjust
UAV’s position. In the DRL-based UAV controller, the i-th
UAV observes state sik, move its position uik by taking action
aik, and gets a reward rik through the UAV-environment inter-
action. The input of DRL-based controller (i.e., state of the
UAV) is determined by the position of UAV and the predicted
target position obtained in the time prediction of FR estimation
part. Then, in the measurement update stage, the states of FRs
x̂k are corrected through the measurement likelihood function
obtained from distance measurements which are received by
UAVs. Details are described in the next subsections.

A. DRL-based Controller Design

The components of the DRL-based UAV controller form a
Markov Decision Process or MDP (i.e., Sec.III-A) and include
the elements: state, action, reward function, and training
process.

1) State

The state vector of the i-th agent at timestep k considers
UAV position and target position, which is represented by sik =
[uik,p

i1
k , . . . ,p

iM
k ,qi1k , . . . ,q

iN
k ] ∈ R3(M+N). The state vector

of the i-th agent consists of three parts:

• ui : absolute coordinates of the i-th agent.
• pīi : relative coordinates between the i-th agent and the
ī-th agent.

• qij : relative coordinates between the i-th agent and the
j-th target.

The relative coordinates between the i-th agent and the ī-th
agent is given by pīi = (uī − ui)ᵀ, where i, ī ∈ {1, . . . ,M},
and i 6= ī. Each relative coordinates pīi is concatenated
into one vector

[
pi1, . . .piM

]
∈ R1×3(M−1). The relative

coordinates between the i-th agent and the j-th target is given
by qij = (c̃j − ui)ᵀ, where j ∈ {1, . . . N} and c̃jk is the
predicted target position extracted from the predicted target
state x̃jk. Each relative coordinates qij is concatenated into
one vector in order

[
qi1, . . . ,qiN

]
∈ R1×3N . The input size

of DRL varies with the number of agents and targets.

2) Action

In each timestep, the i-th agent selects action aik from
discrete action space A defined in Sec. IV-B. The selected
action determines the next position of the UAV. If the action
combination selected by the DRL-based controller is likely to
cause collisions between UAVs, the selected action is replaced
by another action among the action space.

3) Reward

The agent observes its state from the environment and
takes action. Through this interaction, each agent receives a
scalar reward from the environment. UAVs make a decision to
maximize cumulative reward, and they aim to improve target
tracking performance by minimizing CRLB Ψ. The reward of
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Fig. 3. An overview of the DRL-based first responder tracking system. The green part depicts that the first responder’s state is updated by prediction density
in the time prediction stage, and the posterior distribution in the measurement update stage. The blue part represents DRL-based control. Agents observe their
state from the environment and select actions according to the dueling network where the yellow part is the value function estimator and the blue part is the
advantage estimator. For agent-environment interaction, Each agent learns a policy to maximize Q-value and share a global Q-value estimator.

the i-th agent at timestep k comprises of three sub-rewards,
and it is formulated as follows:

rik = R1,k +R2,k −Ri3,k. (30)

The reward rik aggregates sub-rewards into a single scalar,
whose form is most widely used in multi-objective prob-
lems [39]. The selected action combination from the DRL-
based control should be a solution, called Pareto-optimal,
which maximizes the reward in a multi-objective problem [40].
In above equation, R1 and R2 correspond to global reward,
and R3 to difference reward [41, 42]. The global reward,
denoted as G(sk, ak), is given to the agents based on the utility
of the entire system. All agents receive the same global reward,
regardless of the effect of each agent’s action on the entire
system. On the other hand, difference reward Di quantifies
each agent’s individual contribution to the entire system. The
difference reward is given by:

Di(s
i
k, a

i
k) = G(sk, ak)−G(s−ik , a−ik ) (31)

where the counterfactual G(s−ik , a−ik ) is the global reward
without the i-th agent’s contribution to the system, calculated
by assuming the i-th agent is not present. As mentioned before,
global reward functions R1,k and R2,k are given by G1(sk, ak)
and Gs(sk, ak), respectively. For Ri3,k, the utility of the entire

system is represented by G3(sk, ak), and the difference reward
of the i-th agent Di

3,k is expressed by the difference between
G3(sk, ak) and G3(s−ik , a−ik ).

The CRLB variation reward, R1,k, is a global reward
related to how much CRLB is decreased:

R1,k = η1 ×G1(sk, ak) = η1 ×
(

∆Ψ −∆m

∆M −∆m
+ κ1

)
. (32)

The utility of the entire system is the CRLB difference
∆Ψ = Ψk−1 − Ψk between at timestep k − 1 and timestep
k. All agent get positive R1 when they move to a position
with lower CRLB. The absolute value of the CRLB difference
is substantial when the tracking performance significantly
improves or worsens, comparing timestep k and timestep
k − 1. The tuning parameters ∆m and ∆M determined via
experiments are the minimum bound and the maximum bound
of CRLB difference, respectively, where the 95% of CRLB
difference is in the range of [∆m,∆M ]. Two parameters are
used to scale the CRLB difference and make the 95% of the
first term in parentheses in the range of [0,1]. The parameter κ1

adjusts the range of G1(sk, ak) to [−0.5, 0.5]. The parameter
η1 denotes the magnitude of reward functions R1.

The CRLB magnitude reward, R2,k, is a global reward
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representing how small the CRLB Ψk is at time k:

R2,k = η2 ×G2(sk, ak) = η2 ×
(
e−δ·Ψk + κ2

)
. (33)

For reward function R2, the utility is CRLB of the target
state estimator. As CRLB increases, the rewards awarded to
all agents decrease exponentially. The tuning parameter δ
determined by experiments is the degree to which the reward
is reduced. The parameter κ2 adjusts the range of G2(sk, ak)
to [−0.5, 0.5] and the value in parentheses is positive if CRLB
Ψk is smaller than 0.7 ∗ (1/δ). The parameter η2 changes the
magnitude of reward functions R2.

The difference reward, Ri3,k, quantifies the i-th agent’s
contribution to tracking performance:

Ri3,k = η3 ×Di
3,k, (34)

where the tuning parameter η3 changes the range of the reward.
We define the reward Di

3,k as follows:

Di
3,k =

G3(sk, ak)−G3(s−ik , a−ik )

(J−1
j? )−i

=
J−1
j?

(J−1
j? )−i

− 1, (35)

with

j? = argmax
j∈{1,2...N}

| J−1
j − (J−1

j )−i |, (36)

where J−1
j is inverse FIM of the j-th target for all agents

in the system, and (J−1
j )−i is inverse FIM of the j-th target

when the i-th agent is excluded from the entire system. The
notation j? means a target with the largest difference between
J−1
j and (J−1

j )−i. The utility of Ri3,k considers CRLB of the
j?-th target; in other words, the effect of the presence of the i-
th agent on the j?-th target tracking performance. The utility
of UAV system G3(sk, ak) = J−1

j? is the CRLB of the j?-
th target state estimator, and G3(s−ik , a−ik ) = (J−1

j? )−i is the
CRLB of the j?-th target state estimator when the i-th agent is
absent. The difference between G3(sk, ak) and G3(s−ik , a−ik )
is normalized to (J−1

j )−i to adjust the range of Di
3,k to [−1, 0].

The difference reward of the i-th agent approaches −1 when
the i-th agent has a significant impact on the CRLB of the j?-th
target. Therefore, the total reward rik is obtained by subtracting
the difference reward Ri3,k.

4) Reinforcement Learning Training
A conventional DRL process is introduced in Subsec-

tion III-B. The blue part in Fig. 3 illustrates the overall struc-
ture of the DRL-based multiple UAV controller. Each agent
observes its state and selects an action from the global dueling
network described in Subsection III-C. The global network is
updated by the interaction of distributed agents. Details of the
multiple UAVs control algorithm are provided in Alg. 1. In the
beginning, the Q network is initialized with random weights
of θ. The weights of target Q network are replicated as the
weights of Q network θ− = θ. Also, a replay memory, which
stores the recent ND transition tuples, is initialized (Line 1-3).
With every new episode, the DRL-environment is initialized,
and thus the agents learn various tracking strategies by trial
and error during each episode composed of consecutive K
timesteps without any stopping criterion (Line 4-6). Each
agent selects an action corresponding to maximum Q value

Algorithm 1: Multi-UAV control for target tracking
based on DRL
Input : State vector of i-th agent
Output: Action of agent i-th agent

1 Initialize Q network Q with random weights of θ ;
2 Initialize target Q network Q− with weights θ− = θ ;
3 Initialize replay memory D to capacity ND;
4 for Episode := 1, . . . , Nt do
5 Initialize environment ;
6 for Timestep k := 1, . . . ,K do
7 for Agent i := 1, . . . ,M do
8 Select a greedy action

aik = arg max
ak

Qi(sik, ak) with probability

1− ε or a random action with probability
ε ;

9 Execute action aik ;
10 Store the transition sample(

sik, a
i
k, r

i
k, s

i
k+1

)
in replay memory ;

11 end
12 Sample minibatch from replay memory D;
13 Calculate target value using (7);
14 Calculate loss value using (6);
15 Update Q network;
16 Update target Q network every N time steps;
17 end
18 end

with probability 1 − ε or randomly with probability ε. The
probability ε decreases as the training is repeated (Line 7-
8). The transition sample

(
sik, a

i
k, r

i
k, s

i
k+1

)
is stored in the

replay memory D (Line 9-10). A minibatch consisting of
NB transition tuples is sampled uniformly from all transitions
in replay memory D to calculate the target values and loss
function. The weights of the Q network are updated, while
reducing the loss function with the optimizer. Then, target
Q network is updated, duplicating the weights of Q network
every N timesteps (Lines 12-16).

B. FRs State Estimation

We use particle filtering [43] to estimate the posterior
distribution of the target states given the noisy measurements.
As shown in Fig. 3, the target position is first predicted, and
then used as the input to the DRL-based controller. After
the locations of UAVs are determined by the DRL-based
controller, the target position is corrected in the measurement
update step. The main concept of the particle filter is to
construct a posterior distribution p(xk|Y1:k) of target state xk,
given measurements Y1:k = {y1, y2, . . . , yk} up to timestep
k. The time prediction and measurement update is computed
as follows:

p(xk|Y1:k−1) =

∫
p(xk|xk−1)p(xk−1|Y1:k−1)dxk−1,

(37)
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p(xk|Y1:k) =
p(yk|xk)p(xk|Y1:k−1)∫
p(yk|xk), p(xk|Y1:k−1)dxk

(38)

where p(xk|xk−1) ∼ N (Φxk−1 + Γννk,ΓωΓᵀ
ωσω) is a

probabilistic model of the state evolution (transitional density)
defined by (14), and p(yk|xk) is a measurement likelihood
function defined by (18).

The green part in Fig. 3 shows the target state estimation
process in the proposed system. In the time prediction stage,
the j-th predicted target state x̃jk is determined by prediction
density p(xjk|Y

j
1:t−1) and is calculated as follows:

x̃jk =

∫
xjk p(x

j
k|Y

j
1:k−1)dxjk. (39)

The predicted target state x̃jk is used as input of the DRL-
based controller to select the UAVs’ actions. Then each UAV
moves to their new position according to actions selected by
the DRL-based controller and receives distance measurements
from the ground targets.

The posterior distribution p(xk|Y1:k) depends on measure-
ment likelihood p(yk|xk) calculated by distance measure-
ments. The measurement likelihood function of the j-th target
is given by:

p(y1j
k , . . . , y

Mj
k |x

j
k,u

1
k, . . . ,u

M
k ) =

M∏
i=1

p(yijk |x
j
k,u

i
k), (40)

where p(yijk |x
j
k,u

i
k) = N

(
yijk |h(c̃jk,u

i
k) + µijk , (σ

ij
k )2
)

is
measurement likelihood function of the j-th target and the
i-th UAV. The posterior distribution is obtained by Bayes’
theorem (38) and the estimated target position x̂jk is obtained
as follows:

x̂jk =

∫
xjk p(x

j
k|Y

j
1:k)dxjk. (41)

VII. SIMULATION RESULTS AND ANALYSIS

To evaluate the performance of the proposed approach, we
have divided our evaluation into five main parts. The first sub-
section introduces settings for target tracking simulation. In the
following two subsections, the results of single-target tracking
and multi-target tracking are presented. We present the CRLB
of the target state estimator and localization error to verify
the tracking performance of DRL-based control, comparing
to CRLB-based control [36] (mentioned in Section V-B),
Genetic Algorithm (GA)-based control [44] and Discrete Par-
ticle Swarm Optimization (DPSO)-based control [45]. The
DRL-based control should maintain the CRLB of the target
estimator during the entire timesteps at the same level as
the CRLB-based control, where it always selects an optimal
action combination. The localization error is defined as Mean
Squared Error (MSE) between the estimated target position
and real target position, which is formulated as:

MSE = E
[ N∑
j=1

(xj − x̂j)2

]
(42)

TABLE I
SIMULATION PARAMETERS

Parameters Unit Value
Experiment 1 Experiment 2

N 1 2
Td [sec] 1 1
αΦ 0.95 0.9
σ2
ω [m/s2]2 0.52 0.52

pl [m/s2] 0.1 0.1
M 3 4
Nθ 4 4
d [m] 2.5 3

∆m -20 -20
∆M 20 20
κ1 -0.5 -0.5
κ2 0.5 0.5
δ 0.02 0.02

σLoS [m] 0.5 0.8
µNLoS [m] 5 5
σNLoS [m] 5 5
α 0.7 0.5
β 10 10
η1 20 10
η2 10 20
η3 10 10
K 100 100

Learning rate 0.0001 0.0001
Training iteration Nt 10000 20000
Population (DPSO) 5 5

Max. generation (DPSO) 10 10
Population (GA) 50 50

Max. generation (GA) 50 100

Fig. 4. Trajectories of three UAVs and one target.

In the fourth subsection, we present two metrics, reward and
run-time, to prove that the proposed approach is effective
for real-time tracking. Finally, the last subsection shows that
the CRLB-based control needs to be replaced with alternative
control methods in larger-scale problems.

A. Simulation Setup

Our experiments are conducted on Ubuntu 16.04 server with
Intel i7-4790K. We use three fully-connected layers with 50
neurons and ReLU activation, Relu(x) = max(0, x). The third
layer is connected to two streams, estimators of value function
and advantage function. The size of replay memory is ND =
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Fig. 5. Elevation angle between UAVs and target.
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Fig. 6. Probability of LoS (α = 0.7, β = 10) in urban environment.

5000, and minibatch is randomly sampled consisting of NB =
128 transition tuples selected from replay memory D. After
the training stage, Each agent selects its action corresponding
to the maximum Q-value from the trained network to verify
the performance of the trained network. Detailed simulation
parameters are presented in Table I.

B. Experiment 1 : Single Target Tracking

In this experiment, there is one ground target, whose
initial state vector is set to [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]ᵀ =
[40, 0.4, 0, 40, 0.4, 0, 0, 0, 0]ᵀ with units m, m/s,
m/s2, m, m/s, m/s2, m, m/s and m/s2. Initial
positions of three UAVs are [x, y, z] = [20, 25, 25]ᵀm,
[60, 25, 25]ᵀm and [40, 65, 25]ᵀm. The discrete
acceleration level is set to L = Lx × Ly × Lz =
{(0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0)} in
units of m/s2.

Fig. 4 shows 3D trajectories of three UAVs, and Fig. 5
presents the elevation angle between UAVs and the target.
Fig. 6 is the probability of LoS where the environment is
urban. At the initial state, three UAVs are the same distance
away from the target. They maintain elevation angles about
45◦ with the target, and the probability that three UAVs
receive LoS is 0.75. When UAVs start monitoring missions, all
UAVs the track ground target for entire timestep. At timestep
1 ≤ k ≤ 10, Three UAVs move closer to the target position
around [40, 40, 0]m. The elevation angle increases from 45◦ to
over 65◦, and UAVs receive get LoS measurement from target
with over probability of 0.99. Between timestep 10 ≤ k ≤ 50,
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Fig. 7. CRLB of four UAV control methods.
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Fig. 8. MSE of four UAV control methods over 100 Monte Carlo experiments.

the target begins to move long distances, as its speed increases.
UAVs adjust their flight direction to catch up with the target.
When timestep is between 50 and 80, the target hovers around
[50m, 70m, 0m], and UAVs also fly close to the target.
Elevation angles of three UAVs are around 75◦ during this
time, and they receive LoS measurement with probability
of 0.998. After timestep k ≥ 80, UAVs select their action
that move to trajectory of the target while keeping a certain
distance from the target. Through this results, we confirmed
that each UAVs select their own actions according to the
trained network, and UAVs adjust their trajectories where they
receive LoS measurement from target with a high probability.

Fig. 7 and Fig. 8 present CRLB and localization error
when UAVs track the target moving in the trajectory shown in
Fig. 4 by four UAV controls: DRL-based control, CRLB-based
control, DPSO-based control, and GA-based control. The
CRLB and localization error of each control are averaged over
100 Monte Carlo experiments. The initial CRLB is around
178.78 for four control schemes. During the entire timestep,
CRLB and MSE of the CRLB-based control decrease more
than the other controls because UAVs adjust their position
corresponding to minimum CRLB among candidate positions.
After timestep k ≥ 10, CRLB and MSE of all control
schemes decrease to about 2.2, although there are fluctuations
in CRLB and MSE of four control schemes. The CRLB and
tracking error depict that the three control methods excluding
the CRLB-based control have a level of CRLB that is not
significantly different from the CRLB of the CRLB-based
control. Through this simulation results, we observe that DRL-
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Fig. 9. Trajectories of four UAVs and two targets.

based control achieves comparable tracking performance to the
CRLB-based control which is the optimal control scheme.

C. Experiment 2 : Multiple Target Tracking

In this experiment, there are two targets whose initial vec-
tor are [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]ᵀ = [250, 0, 0, 200, 0, 0, 0, 0, 0]
and [250, 0, 0, 300, 0, 0, 0, 0, 0] with units m, m/s, m/s2, m,
m/s, m/s2, m, m/s, and m/s2. Four UAVs are placed in
a square shape in the middle of two targets. The initial
state vectors of four UAVs are [x, y, z] = [240, 240, 25]ᵀm,
[240, 260, 25]ᵀm, [260, 240, 25]ᵀm and [260, 260, 25]ᵀm. The
discrete acceleration level is L = Lx × Ly × Lz =
{(0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0)} in units
of m/s2.

Fig. 9 is 3D trajectories of four UAVs and two targets for
entire timesteps. Fig. 10 and Fig. 11 are elevation angles be-
tween four UAVs and each target. Fig. 12 shows the probability
that UAVs receive LoS measurement in the rural environment.
In this environment, it is possible to ensure sufficient LoS at a
lower elevation angle than the environment in Experiment 1.
When all UAVs and targets are in the initial state k = 1, agent
1 and agent 3 are close to target 1 with the same distance.
The other two agents are far from target 1, but closer to
target 2. Four agents maintain elevation angles of 30◦ with
the target, which is closer to themselves. It means that they
receive LoS component with a probability of 0.7 from the
closer target. For target which is far from all UAVs, the initial
elevation angle is about 20◦ and UAVs obtain LoS component
with a probability of 0.3. For timesteps 1 ≤ k ≤ 10, agent
1 and agent 3 move in −y direction to get closer to target
1. They achieve an elevation angle at least 50◦ with target
1, and ensure LoS measurement with a probability of 0.98.
Likewise, agent 2 and agent 4 start to move toward the target
2 in the +y direction. Two agents maintain elevation angle
over 40◦, collecting LoS measurement with a probability of
0.93. During timestep 10 ≤ k ≤ 30, agent 1 and agent 3 move
toward the target 1, and agent 2 and agent 4 track target 2.
Two agents are assigned to one target and ensure sufficient LoS
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Fig. 10. Elevation angle between four agents and target 1.
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Fig. 11. Elevation angle between four agents and target 2.
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Fig. 12. Probability of LoS (α = 0.5, β = 10) in rural environment.

measurement from the assigned target at least a probability of
0.93. The two targets have different trajectories between the
timestep 30 ≤ k ≤ 55, which means the target 1 moves long-
distance about from [250m, 215m, 0m] to [280m, 245m, 0m]
and the target 1 goes around [265m, 315m, 0m]. To obtain LoS
measurement from each assigned target, agent 1 and agent
3 move similar to the trajectories of target 1; in the same
manner, agent 2 and agent 4 fly in the vicinity of target 2. For
that period, each agent achieves the elevation angle over 50◦

with the assigned target, and receives LoS measurement with a
probability of more than 0.98. After timestep k ≥ 55, all UAVs
steer their flight direction properly, maintaining the elevation
angle with two targets over 50◦ to guarantee sufficient LoS
measurements. It is confirmed that the action combination
selected from the DRL-based controller enables the group
of UAVs to maintain a high elevation angle and collect LoS
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TABLE II
REWARD OF DRL-BASED CONTROL AND CRLB-BASED CONTROL IN

EVALUATION STAGE

Experiment Reward
Rdiff Rglob Rtot

Exp. 1 CRLB-based control 29.95 5.22 45.64
DRL-based control 14.22 3.55 24.67

Exp. 2 CRLB-based control 39.99 12.72 90.91
DRL-based control 36.93 9.19 73.70

measurement from the multiple targets.
Fig. 13 and Fig. 14 illustrate CRLB and localization error,

where the results are average over 100 Monte Carlo exper-
iments. For four control schemes, it is shown that CRLB is
greatly reduced from 1123 to 10 between timestep 1 ≤ k ≤ 10.
During that time, CRLB-based control has the best perfor-
mance among the other controls because CRLB-based control
enables UAVs to select action combinations corresponding
to minimum CRLB. For timestep 10 ≤ k ≤ 80, the three
control methods except for the GA-based control maintain
CRLB values between timestep 3 and 8; however, the GA-
based control has a noticeably large CRLB among the all UAV
control schemes. After k ≥ 80, the tracking performance of
GA-based control improved, and its CRLB value is reduced to
8; hence, all UAV controls maintain similar performance. For
the DRL-based control, it maintains the low CRLB value of
about 5 and attains similar tracking performance as the CRLB-
based control for the entire timestep. Besides, as shown in
Fig. 14, localization error follows the same tendency as CRLB.
We observe that DRL-based control achieves the comparable
tracking performance to the CRLB-based control and performs
well in the multiple target tracking scenarios.

D. Reinforcement Learning Performance

We investigate the performance of DRL-based control con-
cerning the reward function that all agents receive during
the training stage and evaluation stage first. The cumulative
difference reward Rdiff , cumulative global reward Rglob and
cumulative total reward Rtot in one iteration are calculated as
follows:

Rdiff =
1

K

K∑
k=1

N∑
i=1

Ri3,k, (43)

Rglob =
1

K

K∑
k=1

(R1,k +R2,k) , (44)

Rtot =
1

K

K∑
k=1

N∑
i=1

rik, (45)

where K is total timestep, presented in Table I. Fig. 15 and
Fig. 16 illustrate the cumulative total reward Rtot received
by all agents for training iteration in Experiment 1 and
Experiment 2, respectively. In Fig. 15 and Fig. 16, total
rewards increase and converge over the whole training stage,
and it means that agents learn policy to maximize the reward
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Fig. 13. CRLB of four UAV control methods
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Fig. 14. MSE of four UAV control methods over 100 Monte Carlo experi-
ments.
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Fig. 15. Total reward curve versus the training iteration of Experiment 1.
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Fig. 16. Total reward curve versus the training iteration of Experiment 2.

by repeating the training iteration. Table II represents Rdiff ,
Rglob and Rtot of two control methods in the evaluation
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TABLE III
COMPARISON OF RUN-TIME BY CONTROL METHODS

Control schemes Run-time [s]
Experiment 1 Experiment 2

GA-based control 0.74 2.02
DPSO-based control 0.47 1.18
CRLB-based control 0.56 1.21
DRL-based control 0.01 0.02

stage. In CRLB-based control, UAVs receive greater Rdiff ,
Rglob and Rtot than DRL-based control because UAVs always
take optimal action with minimum CRLB at their current
positions. There is noticeable difference in Rdiff between two
controls, but DRL-based control achieves comparable Rglob
to CRLB-based control in the evaluation stage. It means that
although the contribution of individual UAVs to the tracking
system is low, DRL-based control maintains similar tracking
performance to CRLB-based control by building adequate
geometry for target tracking.

There is a distinct difference between DRL-based control
and three control methods in run-time. Run-time increases
with the number of UAVs, the number of targets, and the
size of action space. First, the run-time complexity of the
CRLB-based control is O(NM

θ ), which increases with the
size of action space Nθ to the power of the number of UAVs
M because the CRLB-based controller calculates the CRLB
of possible action combinations to determine optimal action
combination corresponding to the minimum CRLB. The run-
time complexity of the DRL-based control is O(1) because
the UAVs select their actions from the trained network. In
order to verify the suitability of DRL-based control in real-
time tracking, we present the time it takes for all UAVs to
select their actions every timestep, as shown in Table III.
In experiment 1, DRL-based control takes 0.01 seconds to
select one action; however, CRLB-based control takes 56 times
longer than DRL-based control, and the run-time of DPSO-
based control and GA-based control requires about 47 times
and 77 times than that of DRL-based control, respectively.
In experiment 2, DRL-based control spends 0.02 seconds
taking one action. DRL-based control is about 61 times
faster than CRLB-based control, 59 times faster than DPSO-
based control, and 101 times faster than GA-based control.
It is confirmed that DRL-based control achieves comparable
performance to CRLB-based control and is more suitable for
real-time tracking than the existing algorithms.

E. Performance in Larger-scale Problem

The CRLB-based control is intractable in the larger-scale
problem with numerous UAVs and large size of action space
because the complexity of the CRLB-based control to select
one action combination increases exponentially with the num-
ber of UAVs. Thus, an alternative control method is needed
such as DRL-based control, DPSO-based control, and GA-
based control. Since the previous two experiments are rela-
tively small-scale problems, the advantages of the alternative
control method are not noticeable. The GA-based control takes
more time than the CRLB-based control in Experiment 1 and
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Fig. 17. CRLB of four control methods in the larger-scale problem.

TABLE IV
COMPARISON OF RUN-TIME BY CONTROL METHODS

IN LARGER-SCALE PROBLEMS

Control schemes Run-time [s]
Mean Std

GA-based control 19.01 0.22
DPSO-based control 18.92 0.14
CRLB-based control 28.94 0.98
DRL-based control 0.02 0

Experiment 2. However, in larger-scale problems, the DPSO-
based control and GA-based control takes less time than the
CRLB-based control because the DPSO-based control and
GA-based control find a sub-optimal solution by iteratively
improving the candidate solutions.

In this experiment, there are one target whose initial vector
are [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈]ᵀ = [250, 0, 0, 200, 0, 0, 0, 0, 0] with
units m, m/s, m/s2, m, m/s, m/s2, m, m/s, and m/s2. Eight
UAVs are located in the vicinity of the target. The initial
state vectors of eight UAVs are [x, y, z]ᵀ = [240, 240, 25],
[240, 260, 25], [260, 240, 25], [260, 260, 25], [240, 250, 25],
[260, 250, 25], [250, 240, 25] and [250, 260, 25] with unit m.
The rest of the parameters are the same as those set in Exper-
iment 2. There are 65536 action combinations that consider
the action space of all UAVs.

Fig. 17 is the CRLB of four control methods for 10
timesteps, which is averaged over 10 Monte Carlo experi-
ments. Table IV is average and standard deviation of run-
time to select one action combination. As shown in Fig. 17,
The CRLB-based control has the lowest CRLB among the
four control methods. The other three control methods achieve
similar performance as the CRLB-based control, finding a sub-
optimal action combination. Regarding run-time to select one
action combination, the DRL-based control takes 0.02 seconds,
which requires the least time. The CRLB-based control takes
the most time to select an optimal solution by calculating the
CRLB of all action combinations. The GA-based control and
DPSO-based control select a sub-optimal action combination
at every timestep and are advantageous in terms of run-time
than CRLB-based control. Through the experiment in the
larger-scale problem, it is confirmed that CRLB-based control
can be replaced with alternative control methods: DRL-based
control, DPSO-based control, and GA-based control, and that
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DRL-based control is the most suitable method for real-time
tracking while achieving performance close to the CRLB-
based control.

VIII. CONCLUSIONS

It is expected that the multiple UAV control scheme for
target tracking is essential for the SAR mission in the disaster
environment. This paper has studied DRL-based multiple
UAVs control to accurately track multiple FRs in the fields,
decreasing CRLB of FRs state estimator. The state of each
UAV is obtained by positions of other UAVs and targets.
According to the trained Q-network, each of the UAVs selects
its action control (i.e., flight direction). We exploited a reward
function consisting of global reward and difference reward to
quantify the effectiveness of the selected actions. Simulation
results demonstrate that the proposed DRL-based multiple
UAVs control is an algorithm that can replace CRLB-based
control, which is advantageous for real-time tracking. For
targets with various paths, DRL-based control enables multiple
UAVs to track/localize target position accurately by improving
the performance of the target state estimator. Besides, UAVs
maintain an elevation angle between UAVs and targets to
ensure sufficient the LoS probability from targets. DRL-based
control achieves low CRLB comparable to that of the CRLB-
based control and requires run-time at least 56x faster than
CRLB-based control.
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