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Abstract—We propose the Cooperative Aerial Robot Inspection
Challenge (CARIC), a simulation-based benchmark for mo-
tion planning algorithms in heterogeneous multi-UAV systems.
CARIC features UAV teams with complementary sensors, real-
istic constraints, and evaluation metrics prioritizing inspection
quality and efficiency. It offers a ready-to-use perception-control
software stack and diverse scenarios to support the development
and evaluation of task allocation and motion planning algorithms.
Competitions using CARIC were held at IEEE CDC 2023
and the IROS 2024 Workshop on Multi-Robot Perception and
Navigation, attracting innovative solutions from research teams
worldwide. This paper examines the top three teams from CDC
2023, analyzing their exploration, inspection, and task allocation
strategies while drawing insights into their performance across
scenarios. The results highlight the task’s complexity and suggest
promising research directions in cooperative multi-UAV systems.
The simulation framework, including source code and detailed in-
structions, is publicly available at https://ntu-aris.github.io/caric.

Index Terms—Multi-Robot Systems, Inspection, Task and Mo-
tion Planning.

I. INTRODUCTION

Aerial robots have become widely adopted for the inspection
of complex structures, such as buildings, cranes, bridges,
and airplanes [1]–[3]; see Figure 1. Existing commercial
systems mainly rely on human operators who manually pilot
UAVs. While effective, this approach is labor-intensive, time-
consuming, and prone to human error. As a result, the robotics
community has increasingly focused on autonomous structural
inspection using UAVs to improve efficiency and reliability.

However, most autonomous inspection solutions rely on
path planning algorithms that require a detailed prior model
of the structure to be inspected [1], [4], [5]. Obtaining such
models often requires a separate data collection phase, which
adds to operational complexity and cost. Efforts to perform
online modeling and inspection using onboard cameras have
been explored [6], [7], but cameras are generally inefficient
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Figure 1: Examples of aerial inspection mission for building,
crane, aircraft in our previous projects.

for mapping due to their limited field of view and sensitivity
to lighting conditions. LiDAR sensors, on the other hand, are
highly effective in capturing dense 3D information over large
areas quickly, making them ideal for creating a structural prior
for inspection.

Given the cost and payload limitations of equipping all
UAVs with LiDAR, heterogeneous teams of drones, some
equipped with both LiDAR and camera for mapping and
inspection and others with only cameras, offer a promising
solution. This setup allows for fast and efficient online mod-
eling and inspection, leveraging the strengths of both sen-
sors to balance cost-effectiveness and operational efficiency.
However, designing effective strategies for task allocation,
path planning, and coordination in heterogeneous teams is a
complex problem, especially with practical limitations such as
battery and communication constraints. While single-robot or
homogeneous multi-robot inspection systems have been stud-
ied extensively [8], [9], heterogeneous multi-UAV inspection
remains underexplored, leaving critical gaps in research and
development.

Despite the abundance of research in structural inspec-
tion planning, most of the works are tested in some in-
house simulation environments with user-specified structures.
There is a lack of a readily available simulation framework
that includes a range of realistic structures and considers

https://ntu-aris.github.io/caric
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the challenges of a real-world inspection operation, such as
communication loss. Furthermore, the evaluation of different
inspection planning algorithms presents a challenge. Most of
the existing works apply evaluation criteria focusing on the
completeness and efficiency including the inspection coverage
rate, overall inspection duration, and total length traveled by
the UAVs, however, these metrics do not reflect the quality
of inspection, i.e. whether the video or images taken during
the inspection are in sufficient quality for the detection of
structural weakness. It is possible to have the UAVs scan the
entire structure in a short time but get only blurry images
with low levels of detail that are not useful for inspection.
There is a need for a benchmark toolset that considers the
challenges of a multi-UAV inspection operation in a realistic
setting while providing a comprehensive evaluation of the
algorithms applied.

To address these gaps, we introduce the Cooperative Aerial
Robot Inspection Challenge (CARIC) to stimulate innovative
solutions for heterogeneous UAV inspection and provide a
platform for researchers and practitioners to test their multi-
robot inspection task and motion planning algorithms. The
challenge offers a lightweight and ready-to-use simulation
framework compatible with ROS1 and ROS2, featuring a team
of high-cost mapping and exploration drones and low-cost
inspection drones tasked with inspecting simulated industrial
sites under conditions mimicking real-world operations. The
simulation framework provides sample environments with di-
verse structural properties and integrates practical operational
constraints, including the lack of prior structural model and
the communication loss beyond line of sight. The inspection
performance is evaluated using realistic metrics considering
image quality, including blurriness and resolution, to ensure
the captured data meets the standards for structural analysis.

The CARIC framework has been successfully adopted in
two competitions, drawing wide participation and recognition
from the research community. The first CARIC competition
was held in conjunction with the IEEE Conference on Decision
and Control (CDC) 2023, and the second was part of the IROS
2024 Workshop on Multi-Robot Perception and Navigation
Challenges in Logistics and Inspection Tasks. These compe-
titions have showcased diverse and innovative approaches to
the multi-UAV inspection problem.

In this paper, we present and analyze the strategies adopted
by the top three teams from the first CARIC competition,
highlighting key insights and critical lessons learned to inform
and inspire future research in multi-UAV inspection. The
competition results show that achieving effective and efficient
multi-UAV inspection is a nontrivial challenge, necessitat-
ing careful integration of exploration and inspection phases,
accurate workload estimation for balanced task allocation,
and robust mechanisms to manage communication and path-
planning failures to ensure operational reliability. Notably,
no single approach achieved consistently strong performance
across all test scenarios, clearly indicating the need for con-
tinued research advancements in this domain.

This paper is organized as follows. In Section II, we
review relevant robot planning benchmarks, competitions and
evaluation metrics for inspection planning. Section III details

our proposed benchmark framework and evaluation metrics.
Section IV presents the rules and results of the CARIC com-
petition at CDC 2023, and Section V details the approaches
designed by the top-performing teams. Section VI analyzes the
strategies of the teams and draws insights and lessons from
their performance. Section VII concludes the paper.

II. RELATED WORK

A. Robot Planning Benchmark Platforms and Competitions

The recent fast development of robot planning algorithms
has stimulated tools and competitions to evaluate and bench-
mark the performance of algorithms. The DogeDrone and
Barn Challenge [10] evaluates the performance of goal-driven
planning algorithms for UAVs and UGVs in complex sim-
ulated environments. For exploration planning, simulation-
based platforms [11], [12] have also been proposed to bench-
mark the efficiency of learning-based and classical approaches.
Regarding inspection and coverage planning, although some
research has open sourced their algorithms and simulation
environments [1], they offer limited simulation environments
and instructions for users to integrate their algorithms. The
ICUAS 2023 UAV Competition provides instructions for user
integration but offers a single-UAV simulation environment
for inspecting a small factory building. In CARIC, we offer a
benchmark toolset tailored for implementing and benchmark-
ing multi-robot inspection planning algorithms, with detailed
instructions for installation, control interface, and evaluation to
facilitate usage. We offer diverse simulation environments fea-
turing different complexities and scales of structures (shown
in Figure 3) and simulate practical constraints such as com-
munication dropout. CARIC is integrated into both ROS1 and
ROS2 for easy usage.

B. Evaluation Metrics of Inspection Planning

Effective inspection planning requires evaluating three key
aspects: inspection quality, completeness, and efficiency. Com-
pleteness is commonly assessed using the coverage rate,
which measures how much of the structure’s surface has
been inspected [5], [8]. Efficiency is typically quantified by
metrics such as total path length [8], [13], inspection duration
[7], and the number of viewpoints required to complete the
inspection [5], [13]. Many existing works aim to improve
completeness and efficiency while maintaining a satisfactory
inspection quality. This is often achieved by imposing con-
straints on the UAV’s viewing angle and distance from the
target surface [1], [6], [7], ensuring that the resulting images
have adequate spatial resolution for identifying structural
details. To quantify spatial resolution more precisely, some
studies use ground sampling distance (GSD)—the physical
distance between adjacent pixel centers projected onto the
target surface. For example, [14] and [15] adopt GSD as
a key metric, with [14] explicitly optimizing it along with
coverage rate and total time in their planning algorithm. Other
quality-focused metrics include detection accuracy of defects
or features [3], and model reconstruction accuracy based on
comparison with ground truth data [4], [9]. However, image
quality is not determined by spatial resolution alone. Factors
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Figure 2: The heterogeneous UAV team.

such as blurriness and exposure also play critical roles in
determining whether the collected data is useful for inspection
purposes [16]. Ignoring these can result in high-resolution
images that are unusable due to motion blur or poor lighting.

To address this, CARIC adopts a more holistic evaluation
metric for inspection performance. Given the limited flight
time of UAVs, we treat inspection time as a fixed constraint
and focus our scoring on the quality of collected data. Rather
than simulating full image effects, which is computationally
intensive, we apply analytical equations to efficiently approx-
imate image quality, accounting for both spatial resolution
and blurriness. In our framework, inspection completeness
is measured by the number of interest points successfully
detected, while the overall inspection score incorporates each
detection’s quality, which encourages strategies that balance
wide coverage, high-resolution views, and motion stability.

III. BENCHMARK OVERVIEW

A fleet of UAVs is tasked with inspecting infrastructures
such as building facades, cranes, and airplanes by capturing
images of the surfaces and looking for locations with a
high risk of defects. Unlike conventional approaches that rely
on detailed prior models, the UAVs are provided only with
bounding boxes that encapsulate the structures. Therefore, the
UAVs should explore the unknown volume to obtain the details
of the surfaces to be inspected. During the inspection process,
some interest points on the surface are identified as locations
with high vulnerability and, therefore, need to be closely
inspected with high-resolution images. The objective of the
multi-UAV system is to achieve the highest possible inspection
score by capturing as many interest points as possible with the
highest possible score for each point.

The simulation is implemented using the Gazebo simulator
and RotorS [17]. On our website, we provide instructions for
users to implement their algorithms in both ROS1 and ROS2.
The following sections define the heterogeneous UAV fleet,
sensor data, control and communication requirements, sample
scenes, and score calculation.

A. UAV Fleet

The benchmark features a heterogeneous UAV team com-
prising of N drones, categorized as explorers and photogra-
phers (Figure 2):

• Photographer: A small UAV carrying an inspection cam-
era placed on a motorized gimbal. The main task of a

mbs

hangar
burj
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Figure 3: Sample scenarios in CARIC.

photographer is to capture images of the points of inter-
est. This setting is typical of a commercially available
camera-equipped UAV, such as DJI Mavic 3.

• Explorer: with reference to an autonomous LiDAR-
based inspection UAV 1, we designed the explorer to
be larger than a photographer and equipped with an
inspection camera and a Lidar placed on a motorized
gimbal. Besides image capturing, an explorer is capable
of generating a point cloud map of the surroundings.

The team composition is flexible, with Np photographers
(Np ∈ 0, . . . , N −Ne) and Ne explorers. Note that besides
the UAV, a control station is also present to represent human
supervision and tallies the final score for the mission.

B. Sensor Data

Each UAV has access to the following basic information
during simulation:

• Odometry: Ground truth pose of the UAV in the global
frame of reference.

• Gimbal pose: Relative orientation of the inspection cam-
era with respect to the UAV body frame.

• Inspection score: Each captured image includes a com-
puted score that reflecting the quality of inspection at the
interest points, detailed in Section III-E.

• LiDAR (Explorer only): A rotating LiDAR scanner gen-
erates 3D point cloud data of the surroundings at 10Hz.

Besides, we assume an underlying multi-robot localization
and mapping system is available. Hence the UAVs can access
certain information from the neighbours that are in its LoS,
namely odometry and key frame point cloud. These data ensure
that the photographers can be aware of the neighbors as well
as the surroundings.

C. Control and Communication

We implement a so-called unicon package in the CARIC
stack to allow user to control the UAVs in two ways:

• Partial control: users may send target position or velocity
or acceleration and target yaw angle to the controller.

1https://enterprise-insights.dji.com/blog/m300-rtk-emesent-hovermap-
autonomous-underground-flight
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• Full control: users may send a command including the
target position, velocity, acceleration, and yaw.

The controller node will compute lower-level control inputs
to drive the UAV to the target states. The controller will
ignore a command exceeding the kinematic constraints. For
camera control, users can adjust the camera’s direction by
controlling gimbal pitch and yaw, and trigger image capture
via a command.

Communication between UAVs is restricted to LoS. A UAV
can only send or receive messages from another UAV if they
have direct visibility. We implemented this communication
scheme via a so-called ppcomrouter node, which observes
the LoS condition between objects, and relays or drops the
messages accordingly.

D. Sample Scenarios

We provide several sample structures for testing, as shown
in Figure 3, which include structures with diverse properties
(dimensions, geometric complexity, surface flatness, etc) to
enable evaluation of the generalizability of the algorithms:

• Marina Bay Sands (MBS): the iconic structure of Singa-
pore consisting of three large buildings connected by an
overhanging bridge and a smaller structure (ArtScience
Museum) similar to the shaper of a lotus flower.

• Hangar: A commercial passenger aircraft parked in a
hangar for inspection.

• Crane: A typical crane structure at a port harbor consist-
ing of several connected long and thin beams.

• Burj Khalifa: The tallest building in the world with a
gradually reducing horizontal section.

• Burj Al Arab: The iconic building of Dubai consisting of
a large curved facade.

E. Evaluation Criteria

The performance of the multi-UAV planning strategy is
judged based on the total score of the captured interest
points received by the control station, which is denoted as
Q and defined as follows:

Q =
I∑

i=1

max
j∈{1,...N}

qi,j , (1)

where I is the set of interest points in the scene, N is the total
number of UAVs, qi,j is the visual inspection score of interest
point i by the UAV j.

The visual inspection score qi,j is computed as follows:

qi,j = max
k∈[0,K]

qi,j,k, qi,j,k = qseen · qblur · qres, (2)

where K is the total mission time, qi,j,k is the visual inspection
score of interest point i obtained by UAV j at a time k, qseen ∈
{0, 1}, qblur ∈ [0, 1], qres ∈ [0, 1] are the line of sight (LOS),
motion blur, and resolution metrics, which are elaborated in
Sections III-E1, III-E2 and III-E3, respectively. Fig. 4 shows
an example of the interest points (red squares) with the scores.

The value Q will be calculated at the end of each mission,
where only the scores of UAVs that successfully completed
the mission without collision be considered.

Figure 4: Example of the scores for captured interest points.

Figure 5: Illustration of Motion Blur.

1) Line of sight and field of view: The term qseen is a binary-
valued metric value that is 1 when the interest point falls in
the field of view (FOV) of the camera, and the camera has a
direct line of sight (LoS) to the interest point (not obstructed
by any other objects), and 0 otherwise.

2) Motion blur: The motion blur metric qblur is based on
the motion of the interest point during the camera exposure
duration τ (a provided value) [16]. It can be interpreted as the
number of pixels that an interest point moves across during
the exposure time, i.e.:

qblur = min

(
c

max (|u1 − u0|, |v1 − v0|)
, 1.0

)
, (3)

where c is the pixel width and ∥u1 − u0∥, ∥v1 − v0∥ are the
horizontal and vertical movements on the image plane that are
computed by:

u0 = f · x0

z0
, u1 = f · x1

z1
, v0 = f · y0

z0
, v1 = f · z1

z1
,

[x1, y1, z1]
⊤ = [x0, y0, z0]

⊤ + v · τ,

(4)

(5)

with f being the focal length, [x0, y0, z0]
⊤ the position of

the interest point at the time of capture, and [x1, y1, z1]
⊤ the

updated position considering the velocity of the interest point
in the camera frame at the time of capture, denoted as v.
The calculation of this velocity requires advance kinematic
analysis, and is detailed on our website 2. Figure 5 illustrates
the horizontal motion blur by showing the horizontal (X-Z)
plane of the camera frame, where the vertical motion blur can
be interpreted similarly.

The movement of the interest point should be smaller than
1 pixel for a sufficiently sharp image. Interest points captured
with a pixel movement greater than 1 receive a lower score.

2https://ntu-aris.github.io/caric/docs/CARIC motion blur.pdf

https://ntu-aris.github.io/caric/docs/CARIC_motion_blur.pdf
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3) Image Spatial Resolution: The spatial resolution of the
image is expressed in millimeter-per-pixel (MMPP), repre-
senting the size of the real-world object captured in one
image pixel. To achieve a satisfactory resolution for defect
inspection, the computed horizontal and vertical resolutions
should be smaller than the desired MMPP value. Therefore,
the resolution metric is computed as:

qres = min

(
rdes

max (rhorz, rvert)
, 1.0

)
, (6)

where rdes is the desirable resolution, rhorz, and rvert denote
the resolution in the horizontal and vertical image axis, re-
spectively. We compute spatial resolution in a way similar to
the ground sampling distance (GSD) [15] with consideration
of the surface normal direction.

IV. COMPETITION AT CDC 2023

The first CARIC competition was held in conjunction with
the IEEE Conference on Decision and Control (CDC) in
December 2023 in Singapore. The participating teams were
required to submit software packages to the organizers for
evaluation. The competition featured three distinct scenarios
with the following team compositions:

• MBS: Two explorers and three photographers.
• Hangar: One explorer and two photographers.
• Crane: Two explorers and three photographers.
The number, locations, and sizes of the bounding boxes

were unknown to participants before the competition and were
provided to the software as parameters at runtime. Interest
points, representing areas of potential structural vulnerability,
were sampled on the surfaces within the bounding boxes. Each
scenario had a strict time budget: 600 seconds for MBS and
Crane, and 240 seconds for Hangar. The time starts to count
when any drone takes off, allowing for offline computation
before the flight.

The solution of each team was evaluated over five runs, with
each test including all three scenarios. Teams were ranked
according to the max score across the five runs. The score
is reported to each team after each evaluation, and the teams
are also allowed to update the solution before the deadline. To
ensure fairness, all evaluations were conducted on two desktop
computers with different hardware configurations: Intel Core
i9-13900 CPU with an NVIDIA RTX 4080 GPU, and Intel
Xeon W2295 CPU with dual NVIDIA Titan RTX GPUs.

The rankings were consistent across both hardware setups,
demonstrating robustness in the evaluation. A total of eight
teams submitted software packages, of which seven achieved
valid scores while adhering to communication constraints. The
top three teams were:

• KIOS CoE (University of Cyprus),
• XXH (Nanyang Technological University), and
• STAR (Sun Yat-sen University).

V. WINNING TEAM APPROACHES

The first CARIC competition showcased diverse approaches
to the multi-UAV inspection problem, with teams employing

unique strategies for exploration, inspection, and task alloca-
tion. The following section presents the approaches of the top
three teams, focusing on their methodologies.

A. Team KIOS CoE

1) Overview: Team KIOS CoE emerged as the top-
performing team in the CARIC competition. Their approach
is structured into two key stages: Environmental Mapping and
Cooperative Inspection, as illustrated in Fig. 7. In the first
stage, an operational volume O is defined based on a set of
bounding boxes B, which enclose points of interest. The area
is discretized into a voxel grid, represented as a graph G, with
edges indicating feasible paths (Fig. 6a-b). Explorers traverse
the grid along precomputed paths, using LiDAR to construct
occupancy maps. These maps are opportunistically shared with
photographers when line-of-sight (LoS) is available, enabling
the creation of a global map (Fig. 6c-d).

In the second stage, UAVs collaboratively inspect oper-
ational volume. Inspection waypoints are generated around
the occupied voxels (Fig. 6e). The UAV fleet employs a
distributed approach to solve the Multiple Traveling Salesman
Problem (mTSP), ensuring efficient path planning. Paths are
executed using receding-horizon local planning, dynamically
adjusting for real-time occupancy map updates and collision-
free operation (Fig. 6f).

2) Environmental Mapping: The operational volume O is
determined by calculating the smallest cuboid that contains
both the infrastructure and the initial positions of the UAVs.
This volume is divided into cubic voxels of size V , creating a
connected graph G, where vertices represent voxels and edges
represent possible transitions between them. The adjacency
matrix of G enables efficient navigation and path planning for
UAVs.

Explorer UAVs traverse precomputed paths along the
longest axis of O, gathering LiDAR data to construct local
occupancy maps. Each map identifies voxels that contain ob-
stacles and marks them as occupied. The explorers merge these
maps into a global occupancy map and communicate with
photographers when there is LoS. This global map provides
an initial layout of the operational area, guiding subsequent
inspection by excluding paths through occupied voxels.

3) Cooperative Inspection: During the inspection phase,
UAVs update their occupancy maps in real time by exchanging
data whenever LoS is available. Each robot computes the
waypoints around the occupied voxels to ensure thorough
inspection, where a waypoint is associated with a direction
vector to optimize the gimbal angles. Each robot computes
a subset of the waypoints to travel by solving an mTSP
distributively using a method inspired by [18]. Specifically,
each robot generates a set of N paths given the current
positions of the robots within LoS and then executes the path
tailored to itself.

Paths are executed using a receding-horizon manner, where
UAVs dynamically replan routes by solving the mTSP to
handle changes in the environment. The adjacency matrix of
G ensures that no two UAVs occupy the same voxel, main-
taining collision-free operation. While following inspection
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Figure 6: (a) Derivation of the operational volume, (b) Discretization of the operational volume, (c) Mapping path generation
and execution, (d) Initial occupancy map generation, (e) Inspection waypoint generation, (f) Inspection path generation.
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Figure 7: Overview of the proposed approach for 3D infras-
tructure inspection using multi-UAV system.

paths, UAVs adjust their gimbals to focus on specific areas.
This iterative process of mapping, waypoint generation, and
inspection continues until the mission concludes.

B. Team XXH

1) Overview: Team XXH adopts a team-based approach
for multi-UAV inspection, grouping UAVs into teams based
on their initial positions and roles. Tasks are allocated among
teams proportionally to team size. Each explorer follows a
spiral pattern to explore and map assigned regions system-
atically, while photographers inspect designated layers using
similar trajectories.

2) Team Formation: The ground control station (GCS)
initializes the process by determining the number of teams.
Given Ne explorers and Np photographers, Ne < Np, the fleet
is divided into Ne teams, each including one explorer respon-
sible for environmental sensing. Photographers are assigned to
teams by their proximity to the corresponding explorer.

3) Task Assignment: To allocate tasks proportionally
among teams, the GCS computes an approximate minimum-
length path traversing the longest dimension of all bounding
boxes using a best-first search. Each team is then assigned a set
of bounding boxes along this path, with the total volume of the
assigned regions proportional to the team size. For balanced
distribution, bounding boxes may be split along their longest
side, dividing regions among teams.

4) Exploration Strategy: Each bounding box is represented
as an axis-aligned voxel map, segmented into layers along the
longest dimension. The explorer begins exploration at the base
layer, following a spiral trajectory around the boundary of the
bounding box to identify occupied and unknown voxels. A*
search on the voxel map is used to find collision-free paths.
Once the region is explored, the explorer transmits the updated
map to the photographers. During exploration, photographers
remain at the bounding box entry point to maintain line-of-
sight communication with the explorer.
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5) Inspection Strategy: With the updated map, the explorer
and photographers collaboratively inspect the occupied regions
within the bounding box. The layers are divided among team
members, and each UAV scans its designated section using
a spiral pattern. The angle of the gimbal is dynamically
adjusted to ensure thorough coverage of all exposed voxel
faces. To avoid collisions, UAVs share real-time position
and trajectory data, with priority rules assigned to prevent
deadlocks. Upon completing the inspection of one bounding
box, the team transitions to the next assigned region, repeating
the exploration and inspection process.

All UAVs exchange position and trajectory data. Obstacle
avoidance priorities are assigned based on roles and naming
conventions to resolve potential deadlocks.

C. Team STAR
1) Overview: Team STAR employs a systematic and team-

based approach. Each team consists of one explorer and at
least one photographer, with tasks allocated by solving an
mTSP to optimize workload distribution. The explorer utilizes
the efficient exploration framework FUEL [19] to explore
the environment and transmit the map information to all
photographers within the team. Photographers then employ a
method similar to Star-Searcher [20] to inspect the received
surfaces. To prevent redundant scans, photographers share their
inspected surface information with one another. Concurrently,
all inspected interest points are transmitted to the GCS. More
details are illustrated in Fig. 8.

2) Team Formation: The team formation is similar to the
approach of Team XXH, assigning one explorer to each
team, and photographers are assigned to teams based on their
distance from the explorers. The difference is that, to ensure
balanced allocation, an upper limit of Nt photographers per
team is set, where Nt = ⌈Np/Ne⌉.

3) Task Assignment: An mTSP is solved to optimize task
assignment among the Ne teams for M bounding box task
regions. The objective is to minimize the overall travel distance
while efficiently assigning inspection tasks to each team.
Specifically, a cost matrix for the mTSP solution is constructed
such that the cost of inspecting each bounding box is a
weighted combination of the distance from the explorer to the
box’s center and the box’s volume. This cost computation pro-
vides an approximation of the workload to facilitate efficient
assignment.

4) Explorer Strategy: The exploration framework FUEL
[19] is adopted to acquire environmental information by
the explorers. Frontiers are detected incrementally and then
segmented into appropriately sized clusters using PCA-based
clustering. Cylindrical sampling regions centered on each
frontier are generated to produce viewpoints. For each frontier,
the viewpoint that maximizes the coverage of frontier cells
within the LiDAR field of view (FoV) is selected as the
representative viewpoint. An Asymmetric Traveling Sales-
man Problem (ATSP) is solved based on all representative
viewpoints to determine the next best viewpoint to visit.
Additionally, when communication with photographers in the
same team is available, the explorer transmits map chunks
incrementally.

Figure 8: System overview of Team STAR’s method.

5) Photographer Strategy: Upon receiving the map in-
formation from the explorer, the photographer inspects the
surfaces on the map and incrementally shares the newly
inspected surfaces with other photographers to avoid redundant
scanning. Initially, surfaces are detected and clustered using a
method similar to the explorer’s, and viewpoints are generated
and selected accordingly. However, due to the larger FoV of
the LiDAR compared to the camera and the higher speed of
the explorer relative to the photographer, the photographer
often encounters a substantial number of surfaces requiring
inspection. Consequently, this results in many viewpoints
that need to be planned, leading to significant computational
overhead. To address this issue, the visibility-based viewpoint
clustering method and the hierarchical planning approach from
Star-Searcher [20] are adopted. Viewpoints within a distance
threshold and without occlusions between them are grouped
into clusters. An ATSP is then solved over these viewpoint
clusters to provide global guidance. Subsequently, for local
planning, another ATSP is solved using the UAV’s current
position and all viewpoints within the first cluster.

6) Trajectory Planning: Fast-planner3 is utilized for all
UAVs to generate a smooth and collision-free trajectory from
the current position to the next best viewpoint.

VI. RESULTS AND DISCUSSION

Figure 9 shows the box plots of the overall scores obtained
by the top three teams across tests, alongside the distribution of
scores for individual scenarios. Figure 10 illustrates the paths
of the UAVs and the final detection results of each scenario in
their best-performing runs. Based on the approaches proposed
by the teams and the observation of the teams’ performance
in the competition, we discuss important lessons from the
weaknesses of the methods and highlight potential research
directions.

A. Exploration vs Inspection

KIOS CoE and XXH employ a sequential strategy where
exploration precedes inspection, and the photographers stay
idle when the explorers initially explore the environment.

3https://github.com/HKUST-Aerial-Robotics/Fast-Planner
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Figure 9: Box plots of the overall scores obtained by the top three teams across tests, alongside the distribution of scores for
individual scenarios: MBS, Crane, and Hangar.

(a) KIOS CoE: 2543 points detected, 1828
score (b) XXH: 1915 point detected, 1425 score (c) STAR: 1655 points detected, 1122 score

(d) KIOS CoE: 2827 points, 1765 score (e) XXH: 1937 points detected, 1382 score (f) STAR: 3124 points, 1616 score

(g) KIOS CoE: 1790 points detected, 950
score (h) XXH: 2949 points detected, 1946 score (i) STAR: 1024 points detected, 619 score

Figure 10: Illustration of the paths traveled and the points detected (red squares) for each approach for each scenario. The
bounding boxes are shown in transparent yellow.
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However, their approaches differ: KIOS CoE performs a rapid
exploration along a straight path traversing the longest axis
of the operation space containing all bounding boxes; XXH
follows a more detailed layer-by-layer spiral path for each
bounding box.

Figure 9 shows that KIOS CoE achieves consistently high
scores in the MBS and Hangar scenarios, producing the best
median and maximum scores. As seen in Figure 10a and
10d, KIOS CoE achieves extensive coverage of interest points,
including a significant percentage of bounding box regions. In
contrast, XXH achieves lower scores, leaving parts of the MBS
facade (Figure 10b) and the airplane wings and tail (Figure
10e) being omitted from the scan. As revealed in the video
recording of the tests of XXH, the explorers take a long time
to conduct the layer-by-layer exploration of a bounding box.
As a result, the photographers only start inspection after a
long time, resulting in insufficient time to complete coverage.
In contrast, KIOS’s fast exploration strategy allows the team
ample time to compute and execute inspection tasks, achieving
higher mission scores due to more comprehensive coverage in
scenarios with relatively straightforward structures.

However, rapid exploration by KIOS CoE can compromise
the structural details of the map. This issue is revealed in
the Crane scene, where the thin and closely spaced structures
are underrepresented in the map of KIOS CoE, leading to
photographers omitting many surfaces during the inspection
(Figure 10g). On the other hand, XXH captures 64% more
interest points than KIOS CoE (Figure 10h), demonstrating the
importance of detailed exploration in complex environments.

The STAR team adopts a concurrent exploration-inspection
strategy, where incremental map updates are immediately
shared with photographers. While this approach works well
in a constrained environment, such as Hangar (Figure 10f), it
does not achieve good performance in environments with large
empty volumes. This is likely because assigning bounding
boxes as group tasks is inherently imbalanced, as box sizes can
vary significantly, leading to uneven task allocation without a
redistribution mechanism. Additionally, frontier-based explo-
ration within large free areas of a box can result in excessive
exploration of irrelevant regions, reducing efficiency.

These observations underscore a fundamental trade-off:
rapid exploration maximizes inspection time but risks omitting
critical details; detailed exploration provides better struc-
tural maps but delays inspection. An incremental exploration-
inspection strategy may balance these trade-offs, capturing
sufficient structural details without leaving photographers idle.
However, such strategies demand sophisticated algorithms to
ensure adaptability to diverse environments and compliance
with communication constraints.

B. Inspection Quality vs Detection Rate

KIOS CoE and XXH use waypoint-based navigation, gener-
ating one waypoint per grid face to guarantee comprehensive
coverage. Photographers briefly pause at each waypoint, ad-
justing the camera angles toward surface normals to achieve
high-resolution and low-blur inspection images. In contrast,
STAR optimizes smooth and continuous drone trajectories and

camera movement, prioritizing dynamic feasibility and wide
coverage.

While STAR’s continuous yaw motion allows faster cov-
erage and thus detects more interest points, it compromises
inspection quality. For example, in the Crane scenario, STAR
detects 10.5% more interest points compared to KIOS CoE,
yet achieves 8.4% lower overall inspection scores. The lower
inspection quality arises from the reduced resolution qres due to
oblique viewing angles (Equation 6), and increased blurriness
qblur from rapid camera movements (Equation 3). This shows
that the proposed evaluation metrics effectively measure the
inspection outcome by directly penalizing trajectories and
camera movements that reduce image clarity, despite detecting
more points.

This observation also highlights a trade-off between inspec-
tion quality and detection rate: increasing the drone speed or
camera movement enables faster detection of interest points
but with lower quality. A promising approach is task spe-
cialization, where one photographer focuses on rapid detec-
tion while another performs slower, high-quality inspection.
Additionally, trajectory planning could incorporate inspection
quality metrics to optimize drone speed and camera movement.

C. Task Allocation

KIOS CoE employs a distributed task allocation strategy
where all drones collaboratively solve an mTSP to traverse
viewpoints. In contrast, XXH and STAR divide robots into
teams and assign regions based on bounding box volume and
travel distance. However, the region-based allocation of XXH
and STAR proves problematic, as reflected by their lower mis-
sion scores in the MBS scenario (Figures 10b, 10c). In XXH,
four drones are assigned to the same team and commanded to
inspect the ArtScience Museum (the smaller structure on the
left) before moving to the main buildings. Another explorer is
commanded to inspect the smaller bounding box at the bottom
right of the main buildings. Ultimately, the slow pace of the
inspection leaves a substantial portion of the facade unchecked.
Similarly, STAR assigns more drones to inspect the ArtScience
Museum than the main buildings.

These outcomes highlight how the effectiveness of task
allocation directly impacts the number of interest points in-
spected and thus the mission scores. A good estimation of
the inspection workload is critical for a fair allocation of
tasks. A simple assignment strategy based on the volume of
the bounding box may cause the robots to spend excessive
time on small but complex structures. In contrast, KIOS
CoE’s distributed task allocation is based on the viewpoints
to inspect the explored map of the structures. This provides a
more accurate description of the workload, resulting in more
efficient task allocation.

Additionally, separating a small number of robots into
multiple teams may not yield efficiency gains compared to a
single team due to the difficulty of workload allocation among
teams. However, a single team may become infeasible when
the fleet size increases due to the large communication and
computation resources.
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D. Performance Variance
1) Variance within the Same Scenario: Both XXH and

STAR experience significant variances in performance, with
best-performing runs exceeding the worst by over 1000 scores
in some scenarios (Figure 9). In some runs, XXH solution
failed to find a feasible path for explorers, leaving the entire
team idle for the whole mission duration. Investigations reveal
that XXH solution has a bug in the waypoints selection logic,
ultimately leading to the failure of pathfinding. Both methods
incur collisions during initialization, particularly when drones
start from close positions, disrupting subsequent operations.
These issues highlight the need for robust pathfinding al-
gorithms and improved initialization protocols to enhance
consistency across runs.

2) Variance across Different Scenarios: No single approach
consistently achieves the best performance across all scenarios.
KIOS CoE demonstrates superior performance in the MBS
and Hangar scenarios but struggles with the Crane scene.
Conversely, XXH excels in the Crane scenario, and STAR
achieves strong results in Hangar, but both methods under-
perform in other scenes. As highlighted in previous sections,
these variations stem from differences in exploration strategies,
inspection methods, and task allocation approaches, which
interact uniquely with the challenges of each scenario. These
findings underline the importance of developing algorithms
that adapt dynamically to different environments and achieve
robust performance across various scenarios.

VII. CONCLUSION

This paper introduces the Cooperative Aerial Robot In-
spection Challenge (CARIC), a benchmark and simulation
framework designed to tackle the challenges of heterogeneous
multi-UAV inspection in environments without prior structural
models. CARIC provides a ready-to-use simulation environ-
ment and realistic scenarios to support the development and
evaluation of innovative task allocation and motion planning
algorithms for heterogeneous UAV teams.

The CARIC CDC 2023 competition showcased diverse
strategies for this complex problem. By analyzing the top three
teams’ approaches, we highlighted their unique methodolo-
gies, trade-offs, and the challenges inherent in the task. The re-
sults demonstrated that no single approach has achieved robust
performance across all scenarios, emphasizing the difficulty of
designing universally effective strategies for cooperative aerial
inspection.

Looking ahead, CARIC serves as a foundation for ad-
vancing research on cooperative multi-UAV systems. Planned
enhancements include expanding the framework with more
diverse testing scenarios and bringing it to the upcoming
robotics conferences. We hope the insights and lessons this
work presents will inspire continued innovation in this rapidly
evolving field.
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