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Jointly-optimized Trajectory Generation and
Camera Control for 3D Coverage Planning

Savvas Papaioannou, Panayiotis Kolios, Theocharis Theocharides,

Christos G. Panayiotou and Marios M. Polycarpou

Abstract—This work proposes a jointly optimized trajectory generation and camera control approach, enabling an autonomous agent,
such as an unmanned aerial vehicle (UAV) operating in 3D environments, to plan and execute coverage trajectories that maximally
cover the surface area of a 3D object of interest. Specifically, the UAV’s kinematic and camera control inputs are jointly optimized over a
rolling planning horizon to achieve complete 3D coverage of the object. The proposed controller incorporates ray-tracing into the
planning process to simulate the propagation of light rays, thereby determining the visible parts of the object through the UAV’s
camera. This integration enables the generation of precise look-ahead coverage trajectories. The coverage planning problem is
formulated as a rolling finite-horizon optimal control problem and solved using mixed-integer programming techniques. Extensive
real-world and synthetic experiments validate the performance of the proposed approach.

Index Terms—Planning and control, coverage, optimization.

NOMENCLATURE

{EtEX
uy €U

Tyt
Ugr|¢
Corpe
Vi
L={A,.., A}

K= {/617 .oy H\K\}

“’i = {wla 7w|fl\}

T
M=OxdxZ
bfm,gE{O,l}

UAV state at time-step ¢.

UAV kinematic and camera control
inputs at time-step ¢.

Predicted UAV state for time-step ¢/
computed at time-step ¢.

Predicted control inputs for time-
step t’ computed at time-step ¢.
Predicted UAV camera state (i.e.,
FOV vertices) for time-step ¢'.

The convex hull of the camera FOV
at the future time-step ¢'.

The set £ of n light-rays A;,i €
{1,..,n}.

The surface of the object of interest
is represented as a mesh K com-
posed of triangular facets k;,i €
{1, .., |K]}.

The environment A C R? is dis-
cretized into a 3D grid A composed
of | A| non-overlapping cells w;.

The length of the planning horizon
in time-steps.

The set of all admissible camera
configurations i.e., a combination of
camera rotations (0, ®) and camera
zoom levels (7).

Decision variable indicating whether
there exists a light-ray that can di-
rectly trace back to facet « (identified
by index &) when the UAV is located
within cell @ (identified by index
w).
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bé,t’ it € {0,1} Decision variable indicating whether
at the future time-step ¢’ the UAV is
located within cell w (identified by
index w).

Decision variable indicating whether
at time-step t’ the facet x (identi-
fied by index &) resides within the
convex-hull of the 7y, € |M| cam-
era FOV state.

Decision variable that indicates
whether at time-step ¢’ the iy, cam-
era FOV state is active.

Decision variable indicating whether
at time-step ¢’ the facet x (identified
by index &) is visible through the 1y,
camera FOV state.

UAV memory defined as a function
Q: K — {0,1}, where Q(k) = 1 in-
dicates that facet « has been covered
at some previous time-step 7 < t.

blf;m,t’\t € {07 1}

S, t! |t € {Oa 1}

B/%m%,t’\t € {0,1}

Q(k) € {0,1}

1 INTRODUCTION

T HE interest in unmanned aerial vehicles (UAVs) has sky-
rocketed over the last decade. The latest advancements
in robotics, automation, and artificial intelligence, coupled
with the widespread adoption of small consumer aerial
drones, have spurred unprecedented interest in UAV-based
applications and services. Today, UAVs have the potential
to be utilized across a wide range of application domains,
including surveillance and security [1]-[5], automated in-
spection [6]-[9], and emergency response missions [10]-[15].
Automated coverage planning is one of the key functionali-
ties that can significantly enhance the autonomy of existing
unmanned aerial vehicles (UAVs), enabling them to execute
fully automated missions across the diverse application sce-
narios mentioned earlier. In coverage path planning (CPP)
[16], [17], also referred to as coverage trajectory planning,
the goal is to determine a path that allows an autonomous
mobile agent to fully cover a specific area or object of interest
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while optimizing a particular mission objective, such as
minimizing mission elapsed time.

Despite the extensive range of CPP approaches pro-
posed in the literature, no dominant solution exists for
autonomous UAV-based coverage planning in realistic 3D
environments. Current state-of-the-art UAV-based CPP tech-
niques [16] are primarily focused on covering planar areas
(i.e., 2D terrain coverage) rather than 3D objects. Moreover,
existing approaches (e.g., [18], [19]) typically assume UAVs
equipped with fixed, downward-facing cameras, thereby
excluding the joint optimization and control of the UAV’s
kinematics and camera settings during planning. This as-
sumption simplifies the coverage planning problem, reduc-
ing it to a path-planning problem [20], [21]. Additionally,
most CPP techniques achieve area coverage using simple
geometric patterns (e.g., back-and-forth, zig-zag, or spiral
motions) [22], which often lack the flexibility to generalize
to 3D settings. In this work, we argue that a practical
UAV-based coverage planning solution must: (a) operate
effectively in true 3D environments (i.e., producing coverage
plans for 3D objects rather than planar regions), and (b)
generate coverage plans in an online fashion. Modern UAVs
are typically equipped with controllable cameras featuring
rotation and zoom capabilities, necessitating coverage plan-
ning techniques that optimize not only the UAV’s motion
plan but also the control and management of the camera for
optimal coverage.

Motivated by these challenges, we propose a jointly op-
timized trajectory generation and camera control approach
that enables a UAV agent to generate online trajectories for
covering the surface area of a 3D object of interest. Specifi-
cally, we frame the coverage planning problem as a rolling
finite horizon optimal control problem (FHOCP), jointly op-
timizing the UAV’s kinematic control inputs and its camera
control inputs (e.g., camera rotation and zoom levels) to
produce collision-free coverage trajectories. To facilitate the
generation of look-ahead coverage trajectories over a finite
planning horizon, the proposed approach incorporates ray-
tracing to simulate light rays captured through the UAV’s
camera. This enables the anticipation of the agent’s behavior
over the planning horizon and the generation of trajectories
that account for the parts of the object visible within a finite
set of planned control inputs. The key contributions of this
work are as follows:

e We propose a jointly optimized trajectory genera-
tion and camera control approach for 3D coverage
planning, enabling an autonomous UAV agent to
efficiently generate optimal coverage trajectories for
3D objects of interest.

e We demonstrate how ray-tracing can be integrated
into the coverage planning process to identify the
visible parts of the object through the agent’s cam-
era, thereby enabling the generation of look-ahead
coverage trajectories.

o Finally, we illustrate how this problem can be for-
mulated as a rolling horizon optimal control prob-
lem and subsequently solved using mixed-integer
programming. The effectiveness of the proposed ap-
proach is validated through extensive synthetic and
real-world experiments.

This paper is structured as follows. Section 2 discusses
the related work on coverage path planning with au-
tonomous agents. Section 3 outlines our modeling assump-

tions, Section 4 formulates the problem, and Section 5 dis-
cusses the proposed 3D coverage approach. Finally, Section
6 evaluates the proposed approach, and Section 7 concludes
the paper.

2 RELATED WORK

Initial works on coverage path planning (CPP) primarily
focused on ground robots operating in 2D environments
[23]. Most of these approaches typically involve: (a) decom-
posing the area of interest into a set of non-overlapping
cells, and (b) solving an optimization problem to determine
the robot’s path that traverses all the cells. In [24], [25], the
authors propose coverage planning techniques that enable
the robot to cover the region of interest while simultane-
ously constructing the cell decomposition. In [26], an exact
cellular decomposition coverage planning approach based
on the detection of natural landmarks is presented, while
[27] introduces a spanning-tree-based CPP approach for a
ground robot equipped with a fixed sensor. Additionally,
[28] investigates the CPP problem for robots with energy
constraints. More recently, a coverage planning approach for
2D obstacle-cluttered environments was proposed in [29].
This work introduces a hierarchical, hex-decomposition-
based coverage planning algorithm that ensures complete
coverage of the area of interest.

The coverage planning problem has also been extended
to multi-robot systems [19]. For example, in [30], the authors
propose a multi-robot spanning-tree coverage algorithm for
the coverage of a bounded planar area, using multiple
robots equipped with fixed sensors. In [31], the area of
interest is divided among multiple robots, which then apply
ant-colony optimization to determine the coverage path for
their assigned regions. Similarly, [32] introduces a multi-
robot coverage planning approach based on the capacitated
arc-routing problem, constructing coverage paths while ac-
counting for the robots” energy capacity limitations. The au-
thors of [33] proposed a boustrophedon cellular decomposi-
tion algorithm to address the coverage problem for multiple
robots under communication constraints. Meanwhile, the
work in [34] employs graph neural networks to design a
multi-robot coverage system.

More recently, the coverage path planning problem has
been explored for UAV-based systems and applications [35]-
[37]. Specifically, the coverage of polygonal 2D areas using
UAVs is investigated in [38], [39] and, more recently, in
[40]. In particular, [40] proposes a UAV-based CPP ap-
proach utilizing the traveling salesman problem to cover
multiple 2D polygonal regions. In [41], the CPP problem
is formulated as an optimal control problem for a UAV
operating in a bounded 2D environment, while [42] presents
a coverage planning approach tailored to cuboid-like struc-
tures. The work in [43] employs mathematical program-
ming techniques to command a team of UAVs for area
coverage in the minimum amount of time. In [44], a UAV-
based cooperative CPP approach is introduced, using the
simulated annealing algorithm to account for each UAV’s
sensing and operational capabilities, initial positions, and
no-fly zones. A multi-UAV CPP approach for 2D terrain
coverage is proposed in [45], aiming to minimize completion
time by balancing the workload across UAVs. Additionally,
[46] introduces a cell decomposition algorithm based on
regular hexagons for multi-UAV area coverage. Finally, the
approaches in [47]-[49] explore how the CPP problem can
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be framed as a learning problem and solved using reinforce-
ment learning.

It is important to note here that recent advancements
in 3D monitoring, communications and trajectory planning
using single and multiple UAVs have led to significant
developments across various applications. In [50], the au-
thors propose a UAV-based 3D monitoring framework for
accurately estimating the 3D geometric features of agricul-
tural trees, providing valuable insights for precision agri-
culture and crop management optimization. In [51], the
authors present a UAV-based system for 3D monitoring
and inspection of dams using photogrammetry for damage
detection. A recent survey on UAV-based 3D mapping and
monitoring is available in [52]. The work in [53] introduces a
3D monitoring and video surveillance approach using fixed-
wing UAVs to track suspicious mobile targets, formulating
the problem as a multi-objective optimization to balance
monitoring performance and power efficiency. The study
in [54] explores various strategies and methodologies for
monitoring and patrolling missions with multiple UAV
agents, while [55] reviews recent developments in UAV-
based monitoring applications within transportation.

Regarding multi-UAV communication and trajectory
planning, [56] investigates the problem of energy-efficient
trajectory planning for UAV-based content coverage. A
UAV-aided mobile edge computing framework is proposed
in [57], where multiple UAVs with distinct trajectories fly
over the target area to support user equipment on the
ground. In [58], the authors design a multi-UAV-enabled
wireless communication system to serve a group of ground
users. The joint trajectory planning and communication
problem is formulated as a mixed-integer non-convex op-
timization problem and solved using an efficient iterative
algorithm based on block coordinate descent and successive
convex optimization. Other related work [59]-[61] focuses
on minimizing the completion time of UAV tasks through
joint communication optimization and trajectory planning,
particularly considering energy costs.

In summary, compared to existing CPP approaches, this
work proposes a UAV-based coverage planning technique
specifically designed for 3D environments, where both the
agent and the object to be covered exist in three-dimensional
space. The proposed approach jointly optimizes the UAV’s
kinematic and camera control inputs to generate optimal
coverage trajectories. Additionally, it addresses the visibility
determination problem by incorporating ray-tracing into
the coverage planning process. This integration simulates
the physical behavior of light rays captured by the UAV’s
camera, enabling the generation of look-ahead coverage
trajectories over a future planning horizon. The CPP prob-
lem is formulated as a rolling finite-horizon optimal control
problem (FHOCP), which is then transformed into a mixed-
integer program (MIP) and solved using existing optimiza-
tion tools.

3 PRELIMINARIES
3.1 Agent Kinematics

In this work we consider a mobile UAV agent with state at
time-step ¢, given by z; € RS, operating within a bounded
3D surveillance area A C R? according to the discrete-time
dynamical model shown below:

I3xs
(1-a) IS><3:| Tio1+ [g ngg] fi—1, (D)

€T+ =
¢ 03x3

®*----- : Light-rays A € L(z, 0y, ¢¢, xF)
P
L
A
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z
v v
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X

Fig. 1. The camera’s FOV (with horizontal and vertical FOV angles given
by ¢, and ¢, respectively) is represented by a regular right pyramid with
height h, and a rectangular base of dimensions (I, w). At each time-
step t a finite set of light-rays £(z¢, 0¢, ¢¢,2}) = {A1,.., An} enter the
camera’s FOV (shown with the dotted line segments) as discussed in
Sec. 3.2

where the state of the agent x; € A" is composed of the 3D
position, and 3D velocity vectors in Cartesian coordinates,
denoted hereafter as 2} € R*!, and zy € R*! respectively.
The input vector f; € F C R3! denotes the applied control
force (i.e., the kinematic control input) which allows the
agent to change its direction and speed according to the
mission requirements. The parameter a is used to model the
air resistance, m denotes the agent’s mass, and At is the
sampling interval. Finally, the 3-by-3 square matrices I3x3
and 03x3 denote the identity and zero matrices respectively.
The proposed coverage controller, uses the kinematic model
in Eq. (1) to construct the agent’s coverage plan, which in
turn is used as the reference trajectory to be tracked with a
flight controller (e.g., an auto-pilot) [62]-[65] depending on
the UAV’s aerodynamical characteristics.

3.2 Agent Camera Model

We assume that the UAV agent carries onboard a gimballed
camera with rotation and zoom functionalities, which is
used for viewing and sensing the surrounding environment.
The shape of the camera’s field-of-view (FOV) is represented
in this work by a regular right pyramid which is composed
of four triangular lateral faces and a rectangular base. The
camera’s optical center is assumed to be located at the apex
which is positioned directly above the centroid of the FOV
base. The FOV footprint and range is determined in this
work by the parameter set (I, w, h), where the pair of param-
eters (I, w) defines the size of the FOV’s rectangular base,
and h (i.e., the pyramid height) is the camera’s observation
range, as depicted in Fig. 1. Subsequently, the vertices of
the camera’s FOV for an agent centered at the origin of the
3D cartesian coordinate frame, assuming that the camera is
facing downwards, is given by the 3-by-5 matrix Cy as:

2 12 12 —1/2 0
Co=|w/2 w/2 —w/2 —w/2 0]. )
—-h  —h —h —-h 0

As previously mentioned the agent’s camera is equipped
with optical zoom capabilities, which can be used to alter the
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<> : Zoom level 1 (21)
<> : Zoom level 2 (22)

Fig. 2. The figure demonstrates various configurations of the camera’s
FOV at time t with respect to the control inputs z¢, 6:, ¢+ (i.e., zoom-
level and rotation angles). In this figure the z; € {21, 22}, 6: € {}, and

¢: € {0, T, Z, 3% 7} as shown.

FOV characteristics. Specifically, the optical zoom-in func-
tionality increases the camera’s observation range (i.e., dis-
tant objects can become observable through magnification),
however this operation reduces the FOV footprint size. A
particular zoom-level z which belongs to the finite set of all
supported zoom-levels that can be applied to the camera
ie, z € Z = {z1,..,2z/|zi € R,z > 1} (the notation |.|
denotes the set cardinality), alters the FOV parameters as
follows:

B =hxz and, (I',w') = (l,w) x 271, (3)

where (I’,w’,h') are the modified FOV parameters after
applying the optical zoom level z. Consequently, the FOV
matrix Cp is in fact a function of the applied zoom-level z
i.e., Co(2). A zoom-level with value of z = 1 does not alters
the FOV characteristics, and thus describes the original FOV
state without zoom. Zoom-levels with values z > 1, increase
the observation range h, and scale down the FOV footprint
size (I, w), as shown in Eq. (3).

Additionally, the camera’s FOV can be rotated in 3D
space by commanding the onboard camera controller to
execute sequentially two elemental rotations i.e., one rota-
tion by angle § € [0,7) around the y—axis, followed by
a rotation ¢ € [0,27) around the z—axis. Subsequently, at
time ¢ the agent can rotate and point the FOV of its camera
anywhere inside the 3D surveillance space, as shown in Fig.
2, by applying the following geometric transformation:

Ci(2t, 01, 01)i = Ry(de)Ro(0:)Co(20)i, Vi € {1,..,5}  (4)

where Co(z¢); is the iy column of the matrix Co(z),
Ci(zt, 0, ¢¢); is the rotated FOV vertex, and the rotation
angles 0, and ¢, are the camera controller’s input signals
at time t. The 3D rotation matrices Ry(6;) and Ry (¢;) are
further given by:

cos(fy) 0 sin(f;)

Ry(0:) = 0 1 U ©)
—sin(6;) 0 cos(6;)
cos(¢r) —sin(¢r) 0O

Ry(¢r) = sin(()qbt) COS(()¢>t) (1) . (6)

We should mention that the two rotation angles 6, and ¢;
take their values from the finite sets of admissible rotation

angles © = {01,..,0,g/} and ® = {¢1, .., |9}, respectively
(i.e., 0; € © and ¢, € ®). To summarize, the agent’s camera
pose (i.e., position and orientation) in 3D space, also referred
to as the camera’s state, can be computed as:

Ci(2t, 0s, b1, 0F) = Co(21, 0, $1) + 2P, (7)
p

where z; is the agent’s position at time-step ¢ accord-
ing to Eq. (1). Finally, we consider that at each time in-
stance t a finite-set of (straight) light-rays (indicating the
propagation of light) enters the camera’s optical center,
causing matter to be imaged (and eventually observed).
The set of light-rays captured through the agent’s cam-
era with state C;(2,0;, ¢y, 2¥) is denoted in this work as
L(zt, 04, ¢p,2Y) = {A1, .., A}, where A;,i = 1,..,n denotes
the individual light-ray in the set which is further given by
the line-segment

A; = {)\z + d(xf — )\z) :d e [0, 1]}7 8)
P

where z; is the light-ray’s end point which enters the
camera’s optical center at time ¢ (denoted by the agent’s
position), A; is a fixed point on the camera’s FOV base
denoting the ray’s origin, and d is a scalar. This is illustrated
in Fig. 1.

4 PROBLEM FORMULATION

We can define the agent’s joint control signal u; at time ¢,
to be composed of the agent’s kinematic control input f:, as
well as the camera zoom-level z;, and rotation angles (6;, ¢:)

as:
e = {fe, 2,01, b1, )

where we define u{ = fi,uf = 2, uf = 0y, and uf’ = ¢y.

It is easy to see that, given a known agent state Z at time
t = 0ie, zg = Z, the agent’s coverage trajectory (i.e., a
sequence of kinematic and camera FOV states) over a finite
planning horizon of length T' time-steps can be designed
to meet specific criteria and goals (i.e., mission objectives
and constraints) by suitably choosing the sequence of con-
trol inputs u, inside the planning horizon. In particular,
the agent’s coverage trajectory over the planning horizon

t € {1,..,T}, can be obtained as:
i—1
xy = Alxg + Z AT B (10a)
7=0
T
U ut7ut7ut 7xtp) (10b)

where Eq. (10a) computes agent’s sequence of kinematic
states, with the matrices A, and B to contain the agent’s
motion model parameters according to Eq. (1) i.e.,

I3y At I3 03x3
A= B =
[03><3 (1 —a)lIzxs|’ 26 Iaxs

and V; denotes the camera’s FOV convex hull gener-
ated by the FOV vertices C; as computed in Eq. (7) ie.,
Vi(zt, 05, 0, 2F) = N (Ce(z4, 04, ¢p,2F)), where A denotes
the convex hull operator. In essence, V, .7 computes the total
area that the agent covered (i.e., observed) with its camera
during its mission. Throughout the rest of the paper and
depending on the context, both notations C; and V; will be
used interchangably to refer to the agent’s camera state (also
referred to as the FOV configuration).

(11)
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Suppose now that we are given an arbitrary bounded
convex object of interest W € A, with total surface area
determined by its boundary dW. The problem tackled in
this work can be stated as follows: Given a sufficiently large
planning horizon of length T time-steps, find the joint control
inputs u;,Vt over the planning horizon, which optimize the
coverage objective i.e., G, and allow the mobile agent to maximally
cover with its camera the surface area OVV of the object of interest.

The aforementioned coverage problem is formulated in
a high-level form as the optimal control problem depicted
in Problem (P1). In particular, in (P1) we are interested in
the sequence of control inputs ug, u1, .., us_, which: a) op-
timize a given mission-specific coverage objective denoted
hereafter as G (e.g., minimizing the mission elapsed time),
and b) allow the agent to maximally cover the surface area
of the object of interest in 3D.

The constraints in Eq. (12b)-(12c) are due to the agent’s
kinematic model as described in Sec. 3.1. Subsequently, the
constraint in Eq. (12d) implements the coverage functional-
ity, which essentially states that the total surface area W of
the object of interest must reside inside the collective area
covered by the agent’s camera FOV during the mission, and
finally, the constraint in Eq. (12e) makes sure that the agent
avoids collisions with various obstacles £ € = in its path,
including the object of interest. Lastly the constraints in Eq.
(12f) make sure that the agent’s state and control inputs
respect the desired operational limits.

Problem (P1): Coverage Problem

argmin  G(z,u) (12a)
U, UL -y Up g
subject to: t € {1,..,T}
t—1
we = Alwg+ > A" 'Bul Vit (12b)
7=0
To=7T (12¢)
oW €V, i (12d)
xo, 2y ¢ & VEEE \%; (12e)
To, Tt € X, U € u Vi (12f)

5 JOINTLY-OPTIMIZED TRAJECTORY GENERATION
AND CAMERA CONTROL FOR 3D COVERAGE PLAN-
NING

The coverage planning problem discussed in the previous
section and shown in problem (P1) is quite challenging to
be solved efficiently. In particular, observe that a feasible
solution to this problem is directly coupled with the length
of the planning horizon T'. IfNT is too short, then no feasible
solution may exist, while if T" is too long then the computa-
tional complexity increases unnecessarily.

In order to bypass this problem, (P1) is transformed into
a rolling finite horizon optimal control problem (FHOCP),
where at each time step: a) the current state of the agent x|,
is used as the initial state, and b) the agent’s control inputs
Utyrit, T € {0,..,T — 1} are computed inside an arbitrary
shorter finite horizon T < T. The first control input in
the sequence u,), is then applied to the agent, the agent
moves to its new state, and the optimization problem is
repeated for the next time step. This optimization procedure

ow epcP ofrck

ACR? ACR?

X y X y

Fig. 3. A 3D point-cloud representation P = {p1, .., p|p| } of the object’s
surface O is extracted, and then triangulated to form a triangle mesh &
consisting of triangular facets x € X which need to be observed through
the agent’s camera.

is performed iteratively until the total surface area of the
object of interest is covered. The notation x/; is used here
to denote the future predicted agent state at time-step t/,
which is computed at time-step ¢.

In this section we will also show how we have incorpo-
rated a ray-tracing based procedure into the proposed 3D
coverage controller, in order to allow the determination of
the visible parts of the scene through the agent’s camera,
and generate look-ahead coverage trajectories during the
optimization.

5.1 Obiject of Interest

It is assumed that a 3D point-cloud representation of the
object of interest is readily available prior to the cover-
age planning mission. Such representation can be acquired
through a 3D scene reconstruction step [66], [67] where
multiple calibrated images are collected from the object
of interest, from which a 3D point-cloud representation
P = {p1,..pp|} € OW, p; € R? of the object’s boundary
can be extracted (i.e., points p € P belong to the surface
area on the object’s boundary). The proposed approach
takes as input the generated 3D point-cloud P, which is
then triangulated by subdividing the object’s surface into
a finite set K of triangular facets £ € R3**3. In essence,
P is partitioned into a finite number of non-overlapping
triangular facets x € K as shown in Fig. 3. Therefore, the
constraint shown in Eq. (12d) i.e., the coverage constraint
becomes:

W, eV, €V, VeEK, (13)

where with slight abuse of notation the expression x € V;
is used here to denote that the facet x must reside within
the convex-hull of the agent’s camera FOV at time-step
7, and therefore we are interested in finding the agent’s
trajectory (i.e., kinematic and camera states) which results
in the coverage of all triangle facets x € K which compose
the object’s surface area. Although, in this work we used
Delaunay triangulation [68], [69] to create the triangle mesh
K, depending on the application scenario alternative trian-
gulation methods can be used as well [70], [71].

5.2 Determining Visibility

Although, the constraint in Eq. (13) can be used to construct
the agent’s trajectory which covers all facets k € K (given
a sufficiently large planning horizon T), it does not take
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-===3:Light-ray (A) @ : Agent position ( x?) é :FOV (V)
X : Occluded

: Visible
Vi

y

Fig. 4. The figure shows that although the two points p; and p2 (marked
with * and x respectively) reside inside the volume V; covered by the
agent’s camera FQV, only point p; is visible. Specifically, in the camera
configuration shown above there is no light-ray A\ € L(z,0:, ¢¢,2})
which traces back to point p2 as all light-rays are blocked by the object
of interest as shown.

into account the visibility problem i.e., determining whether
some facet x which resides inside the agent’s camera FOV
(i.e., K € V;) is actually visible. An illustrative example
of this problem is illustrated in Fig. 4, which demonstrates
the propagation of light-rays A through the agent’s camera.
As shown, in this example the two points on the object’s
boundary p; and ps, both reside inside the agent’s camera
FOV V; at time-step ¢, however only point p; is visible
given the agent location z} and camera state V;. In fact,
as illustrated in the figure point p, resides on the occluded
side of the object’s surface, and as a result there is no light-
ray that can be traced back to point po as all light-rays are
blocked by the object’s body as shown.

Intuitively, a specific part of the object’s surface, rep-
resented by the triangular facet « € K, is visible
through the agent’s camera (given a particular camera
pose Ci(zt, 0, ¢, 2F)) when: a) k resides within the cam-
era’s FOV as discussed in the previous section (ie., K €
Vi(zt,0t, ¢¢,2t)), and b) there exists a lightray A €
L(z, 0, ¢¢, xF) which is not blocked and traces back to facet
k. Conversely, when no light-ray can be traced back to x,
indicates that the specific part of the object is not visible.
This event might be attributed to an obstruction which
blocks the propagation of light-rays and thus rendering
that specific part of the object’s surface unobservable. In
essence, a facet is visible only when it resides inside the
agent’s camera FOV, and there is no occlusion intercepting
the relevant light rays.

More precisely, the notion of visibility can now be
described as follows: The part of the object’s surface
k € K is visible through the agent’s camera with state
Vi(2t, 0, ¢1, x¥) at time ¢ when:

E'AEE(Zt,gt,¢t,(Ef) ZA@IC:I{, (14)
where the ray-tracing operator @, returns the facet k € K
which intersects last with the light-ray A; otherwise it re-
turns () if no facet k € K interests with A. In essence A ® K
computes the intersections of A with all the facets in the set
IC, and returns (if exists) the one facet x which A intersects
just before entering the camera’s optical center. The result
of this operation provides the visible facet  (i.e., the visible

Fig. 5. The figure illustrates the ray-tracing procedure discussed in Sec.
5.2 which is used in order to determine the visibility of some facet x € K.

part of the object’s surface), since the intersecting light-ray
A traces back to x, allowing the surface area captured by x
to be imaged through the camera.

Let us denote the equation of the plane which contains
the triangular facet k € K as:

ai &= B (15)

where & € {1,..,|K|} is the index pointing to facet x € K,
ai € R? is the outward normal vector to the plane contain-
ing Kk, x € R3, Bi = ag -3, % € R3 is a vertex of k, and
the notation a " - b denotes the dot product of the 3D column
vectors a and b.

That said, the operation A @ & first finds the intersection
point (if exists) between the light-ray A which is given by
Eq. (8) (i.e, A = A+d(zf —\)), and the plane which contains
the triangular facet x given by Eq. (15) as follows:

af - AHdEP =N =al -x =
ol o)
af - (xf = N)

where Eq. (16a) is the result of the substitution of A for
x in Eq. (15), and then in Eq. (16b) we solve for d. As a
reminder in Eq. (16b) « is the normal vector to the plane
which contains facet , s is a vertex of k, A is a point on
the light-ray A (i.e., the origin of the ray), and finally z} is
the ray’s end-point given by the agent’s location. In essence
the vector zf — X denotes the direction of the light-ray. An
illustrative example is shown in Fig. 5. Consequently, if the
denominator of Eq. (16b) is equal to zero, the light-ray A and
the facet s are parallel which results in either no visibility
(e, a] - (3x— X) # 0) or distorted view (i.e., o] - (3 — \) =
0). Therefore, we are interested in the scenario where ag .
(zf — ) # 0 and thus there exists a single point intersection
between the light-ray A and the plane which contains the
facet . In such scenario, the light-ray A can be traced back
to k which can render it visible through the agent’s camera.
However, in order for this to happen two conditions must
simultaneously be satisfied: a) the value of d must lie within
the interval d € [0, 1], otherwise the point of intersection
is outside the range of the camera’s FOV, and b) the point

of intersection p = A\ + d(zP — \) (where d € [0,1] is the

(16a)

d= (16b)
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Fig. 6. A set of visibility constraints b, ; is learned through ray-tracing
for each cell @w € A and facet x € K. Within each cell @, we randomly
sample the agent’s position =P, along with various combinations of the
control inputs z € Z, 0 € O, ¢ € ® to identify the visible parts of the
object via the ray-tracing procedure discussed in Sec. 5.2.

solution of Eq. (16b)) must reside within the convex hull of
the triangular facet x i.e., p € A(k).

To summarize, the visibility determination process via
ray-tracing discussed above must be evaluated at each
time-step for all pairwise combinations of light-rays A €
L(zt, 04, ¢r,2F), and triangular facets k € K, inside the
planning horizon. It is easy to see that this is a compu-
tationally expensive task, which needs to be performed at
each time-step. Additionally, we should mention here that,
the implementation of this ray-tracing procedure introduces
non-convex and non-linear constraints which are very chal-
lenging to be handled efficiently during optimization. To
see this, observe that the solution to Eq. (16b) depends on
the unknown control inputs (i.e., 2, 0, ¢+) and state of the
agent (i.e., z}), thus rendering Eq. (16b) non-convex and
non-linear.

Instead of directly implementing the ray-tracing process
discussed above, in this work we employ an alternative
procedure which allows the integration of ray-tracing into
a mixed integer program (MIP), which can be solved using
standard branch-and-bound techniques [72]. To accomplish
this, the ray-tracing functionality is evaluated and learned
off-line on a discretized representation of the environment.
Subsequently, visibility determination is approximated with
a set of binary decision variables, which can easily be in-
corporated into a mixed integer program, thus allowing the
ray-tracing functionality to be utilized during optimization.

To achieve this, the environment A is first discretized
in space, to form a 3D grid A composed of a finite num-
ber of non-overlapping cells A = {w@1,..,@ 4} such that

llﬁ‘l w; = A. Then, within each cell w € A, we randomly
sample the agent’s position «P, as shown in Fig. 6, and we
run the ray-tracing procedure discussed above for various
joint combinations of the control inputs z € Z, 6 € ©, ¢ €
®, identifying in this way the visible parts of the object, and
learning a set of state-dependent binary visibility constraints
which can be embedded in a mixed integer program, and
used during optimization.

Let Lz to denote the set of light-rays that have been
obtained from the application of N random combinations
of the control inputs z € Z,0 € O,¢ € @, and agent states

2P which have been uniformly sampled within the cell @
ie.,

N
Lo =J{A: A€ LL (21,6, 1,20}, (17)
=1

where @ € {1,..,]|A|} is the index pointing to cell w € A,
L% (2,0, ¢i, 2¥) is the set of light-rays given by the camera
pose obtained with the set of control inputs (z;, 6;, ¢;), for
the agent location P sampled within cell @. We then learn

the ray-tracing constraints as follows:

bﬁ7,g=1<:>E|AEZ@:A€B/C=H. (18)

Thus in order to determine the visibility of facet «, we utilize
the binary variable by, ; which is activated when there exists
a light-ray A which traces back to facet ~ when the agent
resides within the cell . In the next section we show how
we have utilized the learned ray-tracing constraints in Eq.
(18) in the proposed 3D coverage coverage controller using
mixed integer mathematical programming.

Problem (P2): 3D Coverage Controller

arg min g, (19a)
Ut trUt41 |ty Ut T —1|¢t
subject to: 7 € {0,..,T — 1}
Torrirpe = Aziiry + Bul it Vr (19b)
Tt = Ttfe—15 (19¢)
Cin = Ry(u®) Ry (u?)Co(u?), Vin (19d)
Conttrtit = Cin + CL’ZTH“, Vi, 7 (19e)
> Swagrsip =1, vr (199
=1, M|
Vintrr+1)t = D(Crytgrs1)t)s Vi, T (19g)
DY piirsrfp =1 <= K€ Vi Vi, 1, 7 (19h)
bg,t+r+1|t =1 < 2}, ,; € Aw), Ve, T (19i)
bi, i, t4r1lt = S tr+1)t N Vi, m,w, 7 (19))
Y A
(bk,m,t+r+1\t A [bu%',t+7—+1\t N bz%,f%])a
bantsriile < Oamtrriae + Q(K), Vi, 1, T (19k)
(191)

Zzb&,7h,t+7'+l|t < ]-a V&
T m

P
xt+7—+1\t ¢ A(f),
Tiyryrt € X, Upprr €U,

V€ € = (19m)

% A
StntHr 1]t br%,m,t+r+1\tv bfz,t+r+1\t € {0, 1},

bis it r+11ts bimttr1yes (k) € {0,1},
mell, o M, &Lkl & e, .. Al

5.3 Autonomous 3D Coverage Control

The proposed 3D coverage controller is shown in Problem
(P2), where we have transformed the coverage problem
discussed in Sec. 4 into a rolling finite horizon optimal
control problem, formulated as a mixed integer program
(MIP). More specifically, the controller shown in Problem
(P2) finds the agent’s joint control inputs (i.e., kinematic
and camera control inputs) w4 .., 7 € {0,..,T — 1} over
the rolling horizon T, such that the coverage objective G is
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optimized, subject to coverage-and-visibility constraints. As
we will discuss next in more detail, Problem (P2) also makes
sure that the duplication of work is minimized (i.e., since
the coverage mission cannot be completed within the short
planning horizon T, the state of the mission is being tracked
and saved into the agent’s memory, therefore allowing the
mission to progress by avoiding the duplication of work),
and that the agent avoids collisions with obstacles and the
object of interest.

5.3.1 Coverage Objective
Let us assume that each part of the object of interest i.e.,
every facet K € K, is associated with a binary variable
biz i t+r+1)¢ € 10,1} which is defined as below:
; L i 3mTr ik eV ATy, (k) FD
AETHLE T (0 Otherwise

(20)

where 7 € {0,..,T — 1}, m € M, and M represents the

set of all possible joint combinations of admissible camera
control inputs (zoom-level and rotation angles) given by:

M=7Zx0x, (21)

where x denotes the Cartesian product on sets, | M| is the
total number of possible camera FOV configurations, and
m € {1,..,|M|} is the index of the FOV configuration m.
Thus Vpy, - denotes the convex hull of the FOV configuration
m € M at time-step ¢+ 7 +1|t. The function Jy,, (k) deter-
mines the visibility of facet x with respect to the FOV state
Vi, 7, by implementing the ray-tracing procedure discussed
in Sec. 5.2. When facet « is visible at time-step 7 through
the m € M FOV configuration Vy, -, the function Jy,, (k)
returns the light-ray that traces back to k, otherwise it
returns the empty set when « is not visible (we will discuss
how the functionality of Jy,, . (k) was integrated into the
proposed approach later in this section).

Therefore, the binary variable ZA)R’WHTH“ determines
whether facet & is covered and is visible through the m FOV
configuration at time-step ¢ + 7 + 1|t. We should point out
here that Vs, ~ depends on the applied control inputs u; s,
and thus the activation of B%7m7t+7+1‘t can be optimized
for coverage by appropriately selecting the agent’s control
inputs inside the planning horizon. Based on that, we can
now define the coverage objective function G as follows:

K] M| T—1 .
g = wp(”’ilup ﬁ*) - Z Z Z ’V(T)b,%,m,t-l—f—&-l\ta (22)
r=1m=1 7=0

where D(LL‘ZIW K*) = foﬂlt — (Sav, +K%)||3 is the squared

Euclidian distance between the predicted agent position
xfﬂ‘ . and the point Sai, + k*, where k* € R? is the centroid
of the nearest unobserved facet k, o is the unit normal
vector to the plane containing facet x, and § € R is a user
defined positive scalar. The parameter w € R, is a positive
tuning weight, and as already discussed the binary variable
ba i, t+7+1)¢ 1S used to track the coverage events. In essence
we are trying to activate B,;7,;L,t+7+1|t inside the planning
horizon for as many facets x as possible. This essentially
maximizes the total surface area covered inside the planning
horizon. The time-depended function (7) can be used here
to penalize the parts of the object that are covered later in the
horizon, thus encouraging the agent to cover as many facets

as quickly as possible. Observe that, the minimization of G is
taking place inside the finite and short planning horizon T,
which results in partial coverage of the object of interest. For
this reason, G is optimized for subsequent time-steps ¢ for
the duration of the mission, and until the object of interest is
fully covered. The function D() is particularly useful for the
mission progress (i.e., it drives the agent towards the facets
that remain to be covered) in the event where although not
all facets have been covered, the remaining facets cannot
be reached for coverage within the planning horizon (i.e.,
the second term of Eq. (22) is 0). Next, we show in detail
how a mixed integer program (MIP) can be formulated to
optimize the 3D coverage objective function of Eq. (22), in a
rolling horizon fashion.

5.3.2 Coverage Constraints

Model predictive kinematic control is achieved with the
constraints shown in Eq. (19¢) and Eq. (19d), where the
kinematic control inputs u;, _, are optimized inside the
planning horizon according to the agent’s kinematic model
as discussed in Sec. 3.1.

The m € M camera configuration (in terms of FOV
vertices) is then given in constraint Eq. (19d) by the vari-
able Cy,, by applying Eq. (4) with the 7y, combination of
camera control inputs (i.e., zoom-level and rotation angles
respectively). Observe that the operation in Eq. (19d) is
precomputed for all | M| possible camera FOV states, and
thus Cy, simply selects the camera configuration m. Sub-
sequently, the camera FOV pose Cy, 141 is obtained by
translating Cy, to the predicted agent location 33&7 41 Via
the constraint shown in Eq. (19e), where we have applied
Eq. (7) as discussed in more detail in Sec. 3.2.

The binary variable s, 1741} is used in Eq. (19f) to
indicate the active camera state at time-step t + 7 + 1|t
More specifically, at each time-step only one camera state
should be active. Therefore, in order to avoid the situation
where more than one camera states are activated in the same
time-step, we use the constraint in Eq. (19f). The decision
variable, s in Eq. (19f) can be thought as a 2D matrix with 7'
columns and | M| rows, with the restriction that the sum of
each column must be equal to one.

Next, the constraint in Eq. (19g) computes the convex
hull Vg, ¢4741)¢ of the FOV vertices defined by the 1y,
camera state Cy, ¢4 r41|¢ at time-step ¢ + 7 + 1]t. The volume
enclosed within the camera FOV Cy, ;4,11 is given by the
system of linear inequalities:

T
ac'r?L,t+T+1|t1i

x4 S IBCﬁL,t+T+1‘t7i’ Vi = [17 23} 5]7 (23)

where the equation o, ;@ =fc,, ., . describes
the equation of the plane which contains face i € {1,..,5} of
the camera’s FOV. The variable ozgfn rirp1ei 18 the outward
normal vector to the plane which contains face i € {1,..,5}
of the camera’s FOV with state Cy, 174110, @ € R3, and
By 1srin),,i 15 @ constant. Therefore, any point 2 € R3 which
satisfies all 5 inequalities shown in Eq. (23) resides within
the camera’s FOV i.e., belongs to the convex hull defined by
the camera vertices Cy, ¢ 4741t

The constraint in Eq. (19h) uses the binary variable
DY .ty to decide whether at time-step ¢ +7+1¢, the tri-
angular facet k € K resides within the my, configuration of



IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, DOI:10.1109/TMC.2025.3551362 9

the camera FOV defined by Vy;, ;4 .+41);- This is implemented
as follows:

ol o KO e (M = Binr) < M, Vi, k,in, 7, (24a)
(24b)

where we have used 7 as the short notation for t+7+1|t, and
thus acm t+r410.i 15 abbreviated as o s (Le., the outward
normal vector to the plane which contains face i of the
m € M camera FOV at time-step 7), and ¢, ,, .., has
been shortened to ;. as shown in Eq. (24a) Moreover,
in Eq. (24a) the triangular facet  has been approximated by
its center of mass k¢, and M is an arbitrary large positive
constant, which is used to ensure that Eq. (24a) is valid for

any value of the binary decision variable bL i, When

k¢ resides within Vy, 41741}, the binary variable by

1, H m, 5T
is activated for all faces i.e., b:’an = 1,vi = {1,..,5}
in order to satisfy the constraint imposed by Eq. (24a). In

such scenario, the binary variable bg i t+r1)¢ (abbreviated
as bY . ) in Eq. (24b) is activated to satisfy the constraint,

whicl'iriridicates that the my, camera FOV contains facet x at
time-step ¢ + 7+ 1|t. When bY . _ = 0, then Eq. (24b) is also
valid as shown. o

Similarly, the constraint in Eq. (19i) uses the binary vari-

able bw t4+741)¢ to determine if the agent’s location Ty, )

at time-step 7 resides within the cell @ € A as shown below:

af 7P+ i (M =~ B;2) < M, Vj,&,7,  (25)
~ 6 N
605, — > bs <0, Ve, T, (25b)
j=1
where j € {1,..,6} indicates the faces of the rectangular-

shaped cell w € A, the time-step ¢ + 7 + 1|t is abbreviated
as 7, the parameters (a;ﬁ, Bj,s) define the coefficients of
the equation of the plane which contains the jy, face of the
win cell of the grid i.e, a;ﬁ - ¢ = P&, and again M is
a large positive constant. Therefore, when the agent resides
within some cell @, the binary variable bA - is activated for
all j = {1,..,6} faces, and subsequently the binary variable

béﬁ is activated, thus indicating the presence of the agent

within cell @ at time-step 7 i.e., b2 = 1.

Subsequently, the coverage—and—visibility constraint
shown in Eq. (20), is implemented in Eq. (19j) as the logical
conjunction shown below:

ba it rrr1lt = Sitariift N
v i o
(b»%,ﬁz,t+r+1|t A ibu%r,t-i-'r-i-llt A bfﬂﬁl)v Vi, m, w, T,

where the binary variable Bk,ﬁz,t+7+1lt is activated when the
centroid k¢ of the facet x, is covered and is visible through
the m FOV configuration of the agent’s camera at time-step
t + 7 + 1jt. In order for this to happen, x° must first reside
within the m FOV configuration at time-step ¢ + 7 + 1|t
as indicated by the binary variable bK it4r1)e and at
the same time the agent must reside within some cell w
as indicated by the binary variable bw t4r41)¢ from which
facet k is visible (i.e., there exists a light—ray captured by the
agent’s camera with the m configuration which traces back
to k) as indicated by the binary variable by ; which was

learned off-line as discussed in Sec. 5.2. Finally, the binary
variable sy, 141 1; makes sure that at time-step ¢ + 7 + 1[¢
only the m out of the | M| FOV configurations is active.

The constraint shown in Eq. (19k) is used to ensure that
the mission progress (i.e., the facets which have been cov-
ered) is being saved and tracked, thus allowing the agent to
avoid the duplication of work. This is essential since in most
scenarios due to the short planning horizon only partial
coverage trajectories would be obtained. This necessitates
the implementation of some form of memory in where the
mission progress would be saved. The agent’s memory is
represented in this work with the function Q : £ — {0,1}
which is defined as follows:

Q) = { )

which is activated to indicate that facet x has been covered
at some time-step t' < t, where ¢ denotes the current
time-step. The constraint in Eq. (19k) discourages the agent
from covering facets which have been already covered,
thus avoiding the duplication of work. This is because the
maximization of the binary variable br€ i, t4r1[¢ €an occur
either through bz 5, ¢4 -+1)¢ Or through Q( ). Thus, if k has
been observed in the past (ie, Q(k) = 1), then there is
no incentive to generate a plan which covers « inside the
current planning horizon (i.e., there is no need to activate
bn s, t4+7+1|¢), Since bH sn,t+7+1|¢ has been already maximized
through Q(k). The next constraint shown in Eq. (191) makes
sure that the agent does not plan a coverage trajectory which
results in the coverage of the same facet more than once
during the same planning horizon.

Finally, the constraint shown in Eq. (19m) makes sure
that the agent avoids collisions with the obstacles in the en-
vironment, and with the object of interest. To implement this
functionality we require that the agent’s position mf+T 1t
lies at all times outside the convex hull of all obstacles £ € =
found in the environment. The procedure followed here first
uses triangulation or tessellation techniques to decompose
the surface area of the convex obstacle { into a finite number
of faces f; ;,i = {1,.. ,n*}, where each face fe; exists on the
plane with equatlon given by: ’

a; cx =P, Vi€ {l,.,n}. (27)

where as before g, is the normal vector to the plane

if 3¢’ < t: kis covered. 26)
oW

which contains the iy, face, Bé is a constant, z € R?, and
€ € {1,..,|2|} is the index of obstacle £ € E. Subsequently,
the iy, plane divides the environment into two half-spaces,
and the intersection of all n® negative half-spaces forms
the convex-hull of the obstacle. Therefore we use the set
of constraints shown in Eq. (28a) - Eq. (28b), and the binary
variable bt 1t to make sure that a collisions with the

obstacle ¢ is avoided at all time-steps t + 7 + 1|t inside the
planning horizon.

T P £ ¢ ;
Qg Ty + Mbt+~r+1lt,i > Béﬂ., V¢, T, 0 (28a)

TLE

£ £ yf
th+f+1\t,z‘ <n>, V&,

i=1

(28b)



IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, DOI:10.1109/TMC.2025.3551362 10

A\ : Facets to be covered —O—: Coverage trajectory % : Start X : End r:
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Coverage trajectory top-down view
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Coverage trajectory with visible camera FOV configurations (front and back views)

Start

End End
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Fig. 7. The figure illustrates a simulated 3D coverage planning scenario executed with the proposed approach.

Specifically, observe from the constraint in Eq. (28a) that
when the agent resides within the convex hull of obstacle

& at time-step t + 7 + 1|t,ﬂ then agi . xf+7+1\t < 5gyi,w,
3

and the binary variable b,, .,,; = 1,Vi is activated in
order to satisfy the constraint (where M is a large positive
constant). Thus, the agent resides outside the convex hull
of the obstacle at time-step t + 7 + 1|tx and the collision

is avoided when 3i € {1,..,né} : bf_‘_ﬂ_l‘“ 0. For
this reason, the constraint in Eq. (28b) makes sure that the

3
t+1+1|t,i

inside the planning horizon is always less than n* as shown
in Eq. (28b).

To summarize, observe that the minimization of the cov-
erage objective G shown in Eq. (22) drives the agent to select
the optimal control inputs w4 ,¢, 7 € {0, ..,7—1} inside the
planning horizon which enable the activation of the binary
variables by i, 14-r+1)t, Which in turn indicate the coverage
of certain parts of the object of interest. Full coverage is then
reached by solving the problem iteratively over multiple
time-steps ¢ within the duration of the mission. This is
achieved by saving the mission progress inside the agent’s
memory, which also allows the agent to minimize the du-
plication of work, and complete its mission in subsequent
optimization steps. Consequently, the coverage mission is
terminated when all facets k € K are covered as indicated
by the terminal condition }_, . Q(k) = |K]|.

number of times b is activated at each time-step

6 EVALUATION

The evaluation of the proposed 3D coverage approach is di-
vided into two parts. In the first part we conduct a thorough
analysis of the proposed approach using synthetic tests,
showecasing its performance in a variety of simulated sce-
narios. In particular, we show the behavior of the proposed
controller in a simulated 3D coverage scenario, demonstrat-
ing the role of ray-tracing during the coverage mission, and

A : Facets covered

A : Facets planned to be covered @ : Executed trajectory
A : Facets remained to be covered @ : Planned trajectory

% : Agent starting location

Planning :
Horizon

Fig. 8. The figure shows the planned coverage trajectory over a horizon
length of 5 time-steps, for time instances ¢t + = + 1|t,t = 4,7 € [0, .., 4].

then we investigate the agent’s coverage trajectory using
various optimization objectives. In the second part of the
evaluation, we illustrate the performance of the proposed
approach in a real-world coverage mission.

6.1 Synthetic Experiments

For the evaluation of the proposed approach we have used
the following simulation setup based on the specifications
of the DJI Mavic Enterprise drone which was utilized in our
field tests. The agent’s kinematic model parameters At,
and m have been set to 1s, 0.2, and 1.1kg respectively. The
agent’s velocity z} and motion control input f; are bounded
in each dimension inside the intervals [—15,15|m/s and
[—10, 10]N respectively. The parameter set (I, w,h) of the
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% :Start X :End r:

5 10 15 20 25 30 35

(@) (b)

Fig. 9. The figure illustrates the agent’s trajectory which was used to
cover the total surface area of the object of interest. (a) Front view of the
object. (b) Back view of the object.

camera FOV has been set as (9.5,9.5,8)m, with |Z] = 2
zoom-levels ie., Z = {1,2}, and n = 50 light-rays. The
rotation angles 6 and ¢ take their values from the sets
© = {30,90,150}deg, and ® = {30,105,180,255,330}deg
respectively. This enables the camera FOV to take one out
of |M| = 30 possible configurations (i.e., 15 configurations
per zoom-level). The volume of the 3D environment .4
is equal to 100°m, which was uniformly discretized into
|A] = 1000 non-overlapping cells in order to determine
the visibility constraints with the procedure described in
Sec. 52, with N = 100. The object of interest to be
covered is described by the Gaussian function f(z,y) =

Aexp (— ((m;(f;)z + (y;g§)2)>, with (z,,y,) = (45,45),

@

0 = o, = 80, and A = 40, triangulated into |K| = 338
triangular facets from a point-cloud of |P| = 200 points.
The planning horizon in the following experiments is set
as T = 5, and the mission time is 100 time-steps. The
term v(7) in the objective function of Eq. (22) is given by
v(r) =exp(T—-71), 7€ {0,.,T—1},5 = 10m, and w = 0.1.
Finally we should mention that we have used the Gurobi
MIQP solver [73] to solve the optimization problem (P2), on
a Mac Studio M1 Ultra.

We start the evaluation of the proposed approach with
an illustrative example shown in Fig. 7. In order to simplify
the analysis and for visual clarity, in this scenario we require
that only a subset of facets K C K need to lge covered. For
this reason, we have randomly sampled || = 15 facets
from the object’s surface as shown in Fig. 7(a) with purple
color. Therefore, given the facets K, in this scenario we seek
to find the agent’s optimal control inputs (i.e., kinematic
and camera inputs) which minimize the coverage objective
in Eq. (19a), and respect the constraints shown in Eq. (19b) -
Eq. (19m). Then, Problem (P2) is executed iteratively until all
facets are covered. Figure 7(b) shows the resulting trajectory
that the agent has executed in order to cover all facets.
The agent starts at (z,y,2) = (10,50,20) and finishes at
(x,y,2) = (48,23,22), with the start and final location
shown as * and x respectively. The facets to be covered
and the agent states (shown as o) are color-coded according
to the coverage elapsed time as shown in Fig. 7(b). Then,
Fig. 7(c) shows the coverage trajectory in top-down view,
and Fig. 7(d) shows the camera FOV configurations which
have been used during the coverage mission. For visual
clarity, we only show the FOV configurations which have
resulted in a coverage event. When there is no coverage
event the camera’s FOV takes its initial state i.e., facing
downwards. The zoom functionality is depicted with the

1 2 3 4 5 6 7 8
. Time-steps (s)
Z 10 T . . . {
N SN\ T T - - {
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Fig. 10. The effect of different objectives on the coverage trajectory. (a)
minimizing the camera gimbal utilization, (b)(c) minimizing the deviations
between consecutive motion control inputs.

camera FOVs colored in cyan, as shown in Fig. 7(d). In this
scenario the coverage mission was executed in 17 time-steps,
no duplication of work occurred, and all facets have been
covered according to their visibility constraints.

Figure 8 shows the controller’s output at time-step 4.
More specifically, the figure shows the agent’s planned cov-
erage trajectory during the horizon 7" of length 5 time-steps
ie, Typ 11, t = 4,7 € {0,..,4} marked with blue circles,
and the predicted FOV configurations which are selected in
order to maximize coverage which are also shown in blue
color along with the covered facets. The agent’s executed
trajectory is 1.4, and executed FOV states are shown in
purple color along with the covered facets. Finally the
agent’s next state is shown in green color. The FOV states
which result in no coverage are omitted from this figure for
visual clarity.

Next, Fig. 9 shows the coverage trajectory which was
executed for covering the total surface area of the object
of interest. Fig. 9(a) shows the front view of the object,
whereas Fig. 9(b) shows the back view. The agent states
(shown in o) and the facets are color-coded according to the
coverage time as shown in the figure. In this experiment,
total coverage is achieved in 44 time-steps.

Figure 10 shows that various secondary objectives can
be incorporated into the proposed 3D coverage controller
in order to achieve specific sub-goals. For instance we
can design a sub-objective that aims in minimizing the
rotations of the onboard camera (i.e., minimize the gimbal
utilization), which for instance can increase the device’s
lifespan. Effectively, we can define this objective as Grov =
s Z‘%\ill (S ttr+1]t — S t+r|t), Where as discussed in
Sec. 5.3, the binary variable sy, ¢1-41)¢ indicates the active
FOV state (one out of |M)|) at time-step ¢ + 7 + 1|¢t. This
particular sub-objective can now be combined with the main
cost function G as a minimization of a weighted multi-
objective cost i.e.,:

min (G + &Grov)

where the parameter @ controls the emphasis given to the
secondary objective. Figure 10(a) shows effect of this sub-

(29)



IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, DOI:10.1109/TMC.2025.3551362 12

—@—: Coverage trajectory ('HEENNTT, 0 W

12345678 9101112131415 16 17
70r 70
60 - 60

Start Start NG
5 5
it
40 - 40 b
N
30 30
20t x

10 20 30 40 50 60 70

The agent is ==*=*=++"|
behind the object

Start

Fig. 11. The effect of ray-tracing and visibility constraints on the cov-
erage planning performance. (a) trajectory without ray-tracing, (b) tra-
jectory with ray-tracing, (c) trajectory without ray-tracing: illustrative ex-
ample of an erroneous coverage event which occurs at ¢ = 7, when
visibility constraints are not enabled. The green facet is erroneously
marked as covered, although it is not actually visible from the agent’s
location shown with a green circle.

objective i.e., Eq. (29), on the agent’s coverage trajectory
over a planning horizon of 8 time-steps, with w = 10.
As illustrated in the figure, the agent managed to cover
all green-colored facets without rotating its camera’s FOV.
Effectively, we can say that this coverage trajectory emulates
the coverage trajectory obtained with a UAV equipped
with a fixed and uncontrollable camera sensor. Observe
now from Fig. 10(b) how the coverage trajectory for the
same scenario changes when we minimize the control effort
which is defined here as the sum of squared deviations
between consecutive kinematic control inputs i.e., Gmotion =
Zf;ll ||u{+7|t — u{+771‘t||§. The coverage multi-objective
cost function which now becomes min(G + @WGmotion), 1S
particular useful in designing energy efficient coverage tra-
jectories which minimize sudden changes in the direction
and speed of the agent, by driving Gmotion — 0 as shown
in Fig. 10(c). In Fig. 10(b)(c) w has been set to 0.1, and
the horizon length is equal to T' = 8 time-steps. In both
scenarios shown in Fig. 10 the agent starts from the same
location, and is tasked to cover the same facets which are
shown in green color. To summarize, we have shown how
different secondary objectives can be incorporated into the
main coverage cost function in order to capture various
mission specifications. These secondary objectives can be
weighted based on their priorities in order to meet the
mission requirements.

The majority of coverage planning approaches in the
literature primarily focus on 2D environments [16], [39]-
[41]. Approaches that address 3D environments often im-
pose restrictive assumptions on the geometry of objects to
be covered, such as cuboid-like structures [8], [22], [42]. In
contrast, the proposed approach addresses the challenge
of coverage planning in 3D environments for objects of
arbitrary shapes, which can be represented as triangular
meshes. In the proposed approach the agent operates in 3D
space, and the object of interest for coverage is also fully

defined in 3D. Additionally, many existing works simplify
the coverage planning problem to path planning [23], [45],
[74] and also neglect the joint optimization of kinematic
and camera control inputs [18], [29], [75]. In contrast, this
work addresses the integrated problem of planning and
control, and designs a predictive controller that simultane-
ously optimizes both kinematic and camera control inputs.
Furthermore, the proposed approach incorporates visibility
determination constraints directly into the control loop,
enabling long-horizon planning and optimal solutions. In
contrast, most existing approaches address the problem us-
ing metaheuristic methods which do not guarantee finding
an optimal solution, lack visibility determination, and are
limited to myopic planning [9], [17], [22], [44], [76], [77].

To evaluate the performance of the proposed approach
in comparison to existing methods, we focus on two
key aspects: (a) emphasizing the significance of visibility
determination by comparing coverage performance with
and without incorporating visibility constraints, effectively
illustrating how methods lacking visibility consideration
are likely to perform, and (b) examining the influence of
planning horizon length on coverage performance, thereby
demonstrating the effectiveness of the proposed approach
over methods that rely on myopic planning. Finally, (c),
we discuss the computational complexity of the proposed
approach.

(a) Visibility determination: To assess the importance
of visibility determination, we evaluate the proposed ap-
proach both with and without the visibility constraints
derived via ray tracing. Specifically, we remove the binary
g,t+7+1|t
the following modified coverage constraint: bz s ¢ 4711¢ =
Sintdrait N bz,m,t e The results demonstrate that,
although this modified constraint directs the agent toward
covering the facets of the object of interest, it does not
account for whether a facet x, located within the agent’s
camera FOV, is actually visible (i.e., whether a light ray
can trace back to x). Figure 11 illustrates the coverage
trajectories of the object of interest with and without visi-
bility constraints, highlighting the impact of incorporating
visibility determination. Specifically, Fig. 11(a) provides a
top-down view of the agent’s coverage trajectory with-
out visibility constraints (i.e., no ray-tracing), while Fig.
11(b) depicts the coverage trajectory obtained with visibility
constraints enabled. In Fig. 11(a), the agent is unable to
determine whether a particular facet x within its camera
field of view (FOV) is actually visible. As a result, many
facets that are not visible but merely fall within the camera
FOV are erroneously marked as covered, leading to an
inaccurate coverage trajectory, as shown in the figure. In
this specific scenario, the agent’s camera FOV spans across
the object’s body. Without visibility constraints, the agent
cannot differentiate which facets belong to the foreground
(i.e., the visible surface area of the object), as illustrated in
Fig. 11(c).

To further assess the importance of visibility determi-
nation in identifying visible facets for coverage, a Monte
Carlo simulation comprising 100 trials was performed. In
each trial, the agent was randomly initialized within the
simulated environment depicted in Fig. 7, and the proposed
controller was executed both with and without visibility
constraints. Coverage facets were randomly selected from
the set K, with the number of facets sampled uniformly

variables b ; and b from Eq. (19j), resulting in
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Fig. 12. The figure shows: (a) The percentage of covered facets as a function of the FOV size, with visibility determination turned on and off, (b) the
time required to complete a coverage mission (in time-steps) as a function of the horizon length, and (c) the computational time complexity analysis
showing the average time required to compute a coverage plan as a function of the horizon length and the number of camera control inputs.

from the range [10, 20]. The results, shown in Fig. 12(a),
for various field-of-view (FOV) sizes (measured in volume),
demonstrate that when visibility determination is enabled,
the controller achieves full coverage of all facets, irrespective
of FOV size, without any degradation in performance. This
outcome is attributed to the integration of ray-tracing in the
proposed method, which ensures accurate identification of
visible facets. Conversely, disabling visibility determination
leads to a noticeable performance decline as the FOV size
increases. This reduction occurs because larger FOVs en-
compass facets within the convex hull of the FOV that are
not genuinely visible. In contrast, smaller FOVs necessitate
closer proximity to the object of interest, inherently align-
ing the agent’s view with the visible facets. Larger FOVs,
however, may include a broader set of facets, some of which
remain occluded despite being within the FOV. These find-
ings highlight the critical role of visibility determination as
a fundamental component in effective coverage planning, a
feature that is currently absent in many existing approaches.

(b) Planning horizon: Figure 12(b) illustrates the
relationship between the planning horizon length and
the average mission completion time. These results were
obtained through a Monte Carlo simulation consisting
of 100 trials, where the agent was randomly initialized
within the environment depicted in Fig. 7. The objective in
each trial was to cover 15 facets randomly selected from
the object’s surface mesh. The figure reveals that for a
planning horizon of 7' = 1 (i.e., myopic planning), the
average mission completion time is approximately 40 time-
steps. However, as the planning horizon length increases,
the mission completion time decreases significantly,
stabilizing at around 16 time-steps for 1" = 6 or greater,
ie, 60% improvement in mission completion time.
While this behavior is inherently dependent on the
specific scenario and problem, it clearly demonstrates
the importance of long-horizon planning for enhancing
coverage performance. Longer planning horizons enable the
agent to anticipate future control inputs, thereby optimizing
the mission objective, as defined by Eq. (22). Conversely,
myopic approaches, which lack the ability to predict
and incorporate future states into the decision-making
process, result in reduced performance and longer mission
durations.

(c) Computational complexity: The coverage planning
problem is formulated as a rolling finite-horizon optimal
control problem (FHOCP) and solved using mixed-integer
quadratic programming (MIQP). It is important to empha-
size that the proposed approach is optimal in the sense
that it computes the control inputs that minimize the ob-

jective function (i.e., Eq. (22)). This is because Problem
(P2) is an MIQP with a convex objective function and
linear constraints, ensuring the existence of a unique global
minimum for any continuous relaxation of the problem.
MIQP solvers, utilizing branch-and-bound or branch-and-
cut algorithms, systematically explore subsets of the feasi-
ble space by enumerating feasible integer solutions. These
solvers leverage convexity to prune suboptimal branches,
guaranteeing convergence to the global minimum-unlike
existing approaches that rely on heuristics. While modern
solvers are highly effective at solving MIQPs, combining
theoretical guarantees with heuristic accelerations and ex-
ploiting problem structure and convexity to efficiently find
the optimal solution, the computational complexity of MIQP
problems can still grow exponentially in the worst case with
respect to the number of decision variables. To evaluate
this, we measured the average time required for an agent
to compute a coverage plan during the mission depicted
in Fig. 7 (where the agent is randomly initialized in the
environment and tasked with covering n facets randomly
sampled from the range [10, 20]).

Figure 12(c) illustrates the average time required to
execute one iteration of Problem (P2) (i.e., generating a
coverage trajectory) over 100 random trials, as a function
of the planning horizon length (T') and the number of
camera control inputs (]M]). As shown, the computational
complexity increases as the planning horizon length and the
number of camera control inputs grow. The results confirm
the theoretical properties of the problem while demonstrat-
ing that certain problem sizes can be solved efficiently
to optimality. Additionally, the results presented in Fig.
12(b) and Fig. 12(c) offer valuable insights into the trade-
offs between performance and computational complexity.
These findings can be leveraged to fine-tune the controller,
enabling it to meet specific mission requirements effectively.
It is worth noting that recent advances in optimization meth-
ods, such as adaptive neighborhood search techniques [78]
and machine learning-based approaches [79], enable large
MIQP problems to be solved efficiently and in real-time.
We should note here that in real-world settings, it is crucial
to ensure that the time required for computing a coverage
plan is either guaranteed, or can be accurately estimated. For
this reason, future work will focus on this aspect, as well as
on developing strategies to handle computation failures or
timeouts encountered during optimization.

Finally, we compare the proposed approach with the
sampling-based view-planning methodology i.e., a popu-
lar variant of the coverage path planning problem [80].
Sampling-based view-planning methods usually utilize a
two-stage approach. First, candidate viewpoints are sam-
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pled within a constrained space around the target object
(e.g., Fig. 13(a)). In the second stage, a subset of these
viewpoints is selected by solving an approximate version
of the set covering problem (SCP) using heuristics such
as greedy search, genetic algorithms, or hybrid methods.
The view planning problem is nominally formulated as the
following constrained optimization problem:

N
min Zw]
j=1
st. Q-9 >1,
d(j, 1) < Ayl vamaxll, Vi #1, (30)
wj € {07 1}7 Vja
Q(i, ) € {0,1}, Vi, j,

1e{l,...,M}, j,le{l,...,N}.

In Eq.(30), ®; is a binary decision variable indicating
whether the jy, View%oint is selected. The binary visibility
matrix € {0,1}M*¥ defines visibility constraints, where
M is the number of object surface facets requiring coverage,
and N is the number of sampled viewpoints. If Q(i,5) = 1,
facet i is visible and covered by viewpoint j. The constraint
on the distance d(3, ) ensures a minimum distance between
connected viewpoints ¢ and j, determined by the UAV’s
allowed maximum velocity Vmax.

To evaluate our approach against the sampling-based
view-planning technique i.e., Eq. (30), we conducted 40
Monte Carlo simulations, randomly selecting 10 facets from
the object’s surface (using the simulation setup described
and shown in Fig. 7) and varying the UAV’s initial position,
measuring the length of the coverage trajectory as an indica-
tion of the coverage performance. Unlike the proposed ap-
proach, which directly optimizes the UAV trajectory, view-
planning methods generate a coverage path (i.e., a sequence
of connected viewpoints). In order to compare the two
approaches, we convert the coverage path P, generated by
the view-planning approach, into a feasible UAV trajectory
by solving the following receding horizon control problem
over a rolling finite horizon of length H time-steps:

H-1 R
min Z 2P — P))?
t=0
s.t. Ti41 = A.Tt + Bft,

L0 = Linit,
thEX,ftEJ:, VtE{O,,H—l}

In essence we want to find the UAV control inputs

{fo,--., fr—1} in a rolling horizon fashion (we have used

vte{o,...,H -1}, @D

H = 5) that optimally track the reference path P,. Here, P,
is a continuous reference path obtained from P via spline
interpolation [81]. Figure 13(a) illustrates an example of the
sampled viewpoint configurations (i.e., UAV positions and
camera orientations) generated in the first stage of the view-
planning approach. In each simulation, we sample 200 valid
viewpoints around the object of interest. The coverage path
is then computed by solving Eq. (30) using a greedy local
search strategy [82]. Figure 13(b) illustrates the average tra-
jectory length obtained using the two approaches, demon-
strating that the UAV coverage trajectory generated by the
proposed approach is approximately 25% more efficient (i.e.,
shorter in terms of distance) compared to that of the view
planning approach. The proposed method jointly optimizes
the UAV’s motion and camera control inputs under visibility
constraints by solving an optimal control problem, whereas
the view planning approach approximates this behavior
through sampling.

6.2 Real-world Experiment

In the second part of the evaluation, we demonstrate the
performance of the proposed approach in a real-world cov-
erage mission. More specifically, the main objective here is
to compute the 3D coverage plan for the Library building
of the University of Cyprus. The library building, shown in
Fig. 14(a), is an oval-like structure with major and minor
axis diameters of about 170m and 85m respectively, and
a height of about 30m. As discussed in Sec. 5.1, as a first
step we have used 3D reconstruction techniques to build a
3D model of the library structure i.e., the library building
was first reconstructed as a point-cloud using Open3D [83],
as shown in Fig. 14(a), and then converted into a triangle
mesh using Delaunay triangulation. As a result, a total of
82 triangles were use to model the surface of the library
building as shown in Fig. 14(b).

For our experimental evaluation we have used the DJI
Mavic Enterprise consumer drone, equipped with a 12MP
gimballed camera system, with horizontal and vertical ro-
tation angles in the ranges ® = {300,315, 0,45, 60}deg,
and © = {0,30,90}deg respectively, and a square FOV
footprint, at a hight of approximately 18m, equal to 20m-by-
20m. The zoom functionality was not utilized for this test
ie., Z = {1}, and the rest of the parameters have been set
as discussed in Sec. 6.1. Figure 14(b) shows the generated
coverage trajectory obtained with the proposed technique.
In this figure the UAV’s trajectory is color-coded based on
the mission elapsed time. Similarly, the object’s facets are
colored based on the time-step which have been observed
by the UAV (i.e., based on the coverage-time).

As illustrated in the figure the generated trajectory en-
abled the coverage of the total surface area of the structure
(the camera FOV configurations are omitted for visual clar-
ity). Subsequently in order to verify the generated coverage
plan in practice, we have utilized our automated drone
tasking platform [84] to command the UAV to execute the
coverage trajectory generated with the proposed approach.
Figure 14(c) shows an instance of the executed coverage
plan during flight-time. Specifically, the figure shows a
snapshot of the live-feed obtained from our mission control
platform while executing the coverage trajectory. Figure
14(d) shows in top-down view of the executed coverage
trajectory in red. The green waypoints shown in the fig-
ure correspond to the latitude-longitude coordinates of the
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planned trajectory computed with the proposed approach
during simulation. Finally, Fig. 14(e) shows the building’s
orthophotomap generated from the images acquired during
the real-world mission, indicating the covered surface area
of the structure i.e., the proposed approach achieves full
coverage by minimizing the cost function shown in Eq. (22).

Implementation details and lessons learned: The UAV
was operated using the DJI Mobile Software Development
Kit (SDK), which facilitated the creation of a custom An-
droid mobile application installed on a smartphone paired
with the UAV. This smartphone acted as an intermediary
by wirelessly connecting to the UAV’s remote controller,
enabling the transmission of commands to the UAV and
the reception of telemetry data such as GPS coordinates,
altitude, battery status, speed, and sensor readings. The
proposed coverage controller was implemented and exe-
cuted on a ground control station (GCS) using Matlab. The
GCS computed the UAV trajectories and transmitted them
to the drone via the mobile application on the Android
smartphone connected to the remote controller. Telemetry
data from the UAV was also relayed back to the GCS
through this setup. Communication between the GCS and
the UAV was facilitated by a VPN server over a wireless
network, allowing data exchange between the two. Mission
monitoring was conducted live using a custom-built UAV
tasking platform [84].

While this prototype setup demonstrated the effective-
ness of the proposed approach, it highlighted several areas
for future improvement. GPS-based positioning introduced
localization errors and inconsistencies, leading to distorted
coverage plans in certain scenarios. Additionally, network
latency resulted in communication delays that impacted the
drone’s operation, and environmental disturbances caused
deviations from the planned trajectories. Future work will

aim to address these challenges by enhancing the approach
to incorporate stochastic and robust predictive control meth-
ods for managing environmental uncertainties, integrating
the controller with the UAV’s onboard systems to improve
real-time responsiveness, and scaling the methodology to
support multiple UAV agents.

7 CONCLUSION

In this work we propose a jointly-optimized trajectory
generation and camera control approach for automated
coverage planning in 3D environments. The proposed cov-
erage planning approach integrates ray-tracing into the
coverage planning process thus allowing an autonomous
mobile agent to determine the visible parts of the object of
interest; and generate look-ahead coverage trajectories by
jointly optimizing its kinematic and camera control inputs
over a rolling finite planning horizon. We show how the
coverage planning problem can be formulated as a finite
horizon optimal control problem, and then solved using
mixed integer programming. Finally, the performance of
the proposed approach is demonstrated through extensive
synthetic and real-world experiments.
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