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Abstract— In this paper we study the problem of cooperative
searching and tracking (SAT) of multiple moving targets with a
group of autonomous mobile agents that exhibit limited sensing
capabilities. We assume that the actual number of targets is
not known a priori and that target births/deaths can occur
anywhere inside the surveillance region. For this reason efficient
search strategies are required to detect and track as many
targets as possible. To address the aforementioned challenges
we augment the classical Probability Hypothesis Density (PHD)
filter with the ability to propagate in time the search density
in addition to the target density. Based on this, we develop
decentralized cooperative look-ahead strategies for efficient
searching and tracking of an unknown number of targets inside
a bounded surveillance area. The performance of the proposed
approach is demonstrated through simulation experiments.

I. INTRODUCTION

One of the biggest challenges today’s society faces is its
resilience to severe disasters. Unfortunately, first responders
currently rely on a number of conventional methods to gather
information that are time consuming and the descriptive
character of the collected information often lacks accuracy,
eloquence and the necessary level of detail. In this work,
we envision that a team of autonomous mobile agents (e.g.
drones) could become an important technological tool to aid
the work of the rescuers. Under this setting, the mission of
one or more drone agents is to assist first responders by
conducting the following important tasks: a) search the area
for situational assessment, and b) detect and track victims
as accurately as possible. More specifically, in a cooperative
search and track (SAT) mission, multiple agents are tasked
to cooperatively search a certain area of interest in order to
discover survivors while at the same time keeping track of
those survivors already detected. This work builds upon the
theory of random finite sets (RFS) and proposes a multi-
agent framework for SAT missions that takes into account
the unknown and time varying number of survivors, the noisy
sensor measurements and the limited sensing range of the
agents. In addition, efficient cooperative search and track
strategies are devised which allow the agents to generate
joint search-plans and detect and resolve tracking overlaps.
The contributions of this paper are as follows:
• Devises efficient cooperative searching and tracking

strategies for a decentralized multi-agent framework.
• Provides a new perspective on the problem of multi-

agent cooperative searching and tracking (SAT) through
a unified probabilistic approach based on random finite
sets (RFS).
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• Proposes a method to recursively compute and propa-
gate in time the SAT-density by extending the classical
probability hypothesis density (PHD) filter to account
for the search density in addition to the target density.

II. RELATED WORK

Previous works in [1] and [2] investigate the SAT problem
but only for the single-agent single-target case. The work in
[3] proposes a recursive Bayesian multi-agent SAT solution,
however the agents are required to be in communication
range at all times. The work in [4] proposes a task assignment
algorithm that integrates area search and target tracking,
however requires that the number of agents is larger than
the number of targets and that a single agent can only track
one target at a time. The problem of multi-agent SAT is
also investigated in [5] but lacks online path generation.
Finally, the work in [6] proposes a cooperative search and
track framework, and a clustering approach for grouping
neighboring agents (that have intersecting decision spaces) in
order to minimize complexity. This work however, assumes
clutter free (i.e. no false-alarm measurements are received)
environment, perfect target detection and that targets can be
uniquely identified. Relevant works also include, the work
in [7] which presents an interesting use of random finite
sets on collaborative multi-vehicle SLAM and the works in
[8], [9] which implement efficient multi-agent RFS-based
simultaneous coverage and tracking algorithms for tracking
multiple targets.

Complimentary to the related work, in this paper we
propose a decentralized architecture where multiple agents
cooperatively search a region of interest, detect targets in the
area and perform tracking of multiple detected targets.We
assume that a particular 2D region of interest needs to be
continuously searched for potential targets with the aid of a
group of mobile agents. The number of targets is not known
a priori and changes over time. The agents are equipped with
sensors and receive noisy measurements from the targets in
the presence of clutter (i.e. false-alarm measurements). The
agents have a limited sensing range for detecting targets and
limited communication range for exchanging information
with other nearby agents. Importantly, the aforementioned
problem has been identified as the hardest version of the
SAT problem that has not been addressed adequately in the
literature as indicated in [10], [11].

That said, the objective of each agent at an arbitrary time-
step is to: a) accurately estimate the number of targets and
their states inside its sensing range from noisy measurements
in the presence of clutter, and b) generate search-plans for
efficiently searching the whole surveillance area. To achieve
a) and b), each agent maintains a modified PHD filter, termed
in this paper as SAT-PHD filter, which in addition to the



target density, it recursively computes the search density.
Finally, the agents opportunistically cooperate by exchanging
information in order to tackle the above objectives more effi-
ciently e.g. when two or more agents are in communication
range they cooperate to generate joint search-plans and to
resolve tracking overlaps (i.e. a situation where 2 or more
agents track the same targets). To summarize, the agents in
communication range exchange their search densities, their
multi-target states and their mode of operation i.e. search
or track. We should also note that all agents are in search
mode optimizing their local or joint search objective (see
subsection V-B) until targets are found in the surveillance
area in which case the respective agents switch to track mode
(see subsection V-C).

III. BACKGROUND ON RANDOM FINITE SETS

The goal of Bayesian filtering [12] is to recursively
estimate the conditional posterior distribution i.e. p(xk|z1:k),
of the target state xk at time k based on the history of
measurements z1, z2, ..., zk up to time k. In the single target
tracking scenario the target state xk and measurement zk
can be represented as random variables or random vectors
with fixed size i.e. the state of a target (e.g. position) can
change over time however the dimension of the state vector
remains constant. On the other hand, in a multi-target system
the number of targets changes over time as targets enter and
exit the surveillance area which results in a multi-target state
(i.e. a collection of individual target states) that changes size
over time i.e. the dimension of this multi-target state varies
over time as opposed to the dimension of the single target
state which remains constant. Using the theory of random
finite sets (RFSs) [13] the collection of target states can
be represented as finite subsets Xk = {x1

k, x
2
k, ..., x

nk

k } ∈
F(X ) where X denotes the state-space of the single target
state and F(X ) denotes the space of all finite subsets of X .
Finally nk is the true but unknown number of targets that
needs to be estimated. The set Xk is called random finite set
and can be seen as a generalization of a random vector.

The multi-object conditional distribution fk(Xk|Z1:k) of
the RFS Xk based on measurements Z1:k up to time k
can be estimated using Bayesian multi-object stochastic
filtering. However, the optimal multi-object Bayes filter is in
general intractable and has no analytical solution. A practical
alternative is the Probability Hypothesis Density (PHD) filter
[14] which only propagates the first-order statistical moment
instead of the full multi-object posterior distribution. More
specifically, the PHD at time k is the conditional density
Dk(x|Z1:k) which when integrated over any region R ⊆ X
gives the expected number of targets n̂k contained in R, i.e.
n̂k(R) =

∫
R
Dk(x|Z1:k)dx, where the notion of integration

is given by the set-integral [13]. Finally, the multi-target state
X̂k can be estimated as the n̂k highest local maxima of the
PHD.

IV. SYSTEM MODEL

A. Single Target Dynamics and Measurement Model

Let the state of a single target have the following form:

(x, `) ∈ X × {0, 1} (1)

where x ∈ X is the kinematic state of the target, X ⊆ Rnx

denotes the kinematic state space of the target, nx is the di-
mension of the state vector x and ` ∈ {0, 1} is the target label
taken from the discrete label space {0, 1}. We denote a true
target with label ` = 1 and a virtual target with label ` = 0.
True targets represent physical targets inside the surveillance
region whose kinematic state x needs to be estimated from
a sequence of noisy measurements whereas virtual targets
represent static locations in the environment which will be
used to model the state of searching i.e. whether or not
these locations have been searched. Throughout this paper,
the kinematic state spaces of true and virtual targets will
be denoted as X 1 and X 0, respectively. The single target
kinematic state vector xk, k ∈ N evolves in time according
to the following equation:

xk =

{
ζ(xk−1) + wk , if xk−1 ∈ X 1 (2a)
xk−1 , if xk−1 ∈ X 0 (2b)

where the function ζ : Rnx → Rnx models the dynamical
behavior of the target. Eqn. (2a) describes the evolution of the
state vector as a first order Markov process with transitional
density πk|k−1(xk|xk−1) = pw(xk − ζ(xk−1)). The process
noise wk ∈ Rnx is independent and identically distributed
(IID) according to the probability density function pw(.). In
this paper we assume that the kinematic state vector xk ∈
X ⊆ R4 is composed of position and velocity components in
Cartesian coordinates i.e. xk = [x, ẋ, y, ẏ]>. Since a virtual
target is static, its kinematic state vector is of the form xk =
[x, 0, y, 0]>. When an agent detects a true target i.e. xk ∈
X 1 at time k, it receives a measurement vector zk ∈ Z
(range and bearing observations) which is related to the target
kinematic state as follows:

zk = h(xk, sk) + vk (3)

where Z ⊆ Rnz denotes the measurement space, sk is the
state of the agent at time k (described in the next sub-
section) and the function h(., .) projects the state vector to
the measurement space. The random process vk ∈ Rnz is
IID, independent of wk and distributed according to pv(.).
The probability density of measurement zk for a target with
kinematic state xk when the agent is at state sk is given
by the measurement likelihood function gk(zk|xk, sk) =
pv(zk − h(xk, sk)). On the other hand, virtual targets are
observed directly without noise i.e. the measurement of a
virtual target is its actual state.

B. Agent Dynamics
Let S = {1, 2, ..., |S|} be the set of all mobile agents

that we have in our disposal operating in a discrete-time
setting. At time k, the 2D surveillance region A ⊆ R2 is
monitored by |S| mobile agents with states s1

k, s
2
k, ..., s

|S|
k ,

each taking values in A. Each agent j is subject to the
following dynamics:

sjk = sjk−1 +

[
l1∆Rcos(l2∆θ)
l1∆Rsin(l2∆θ)

]
,
l2 = 0, ..., Nθ
l1 = 0, ..., NR

(4)

where sjk−1 = [sjx, s
j
y]>k−1 denotes the position (i.e. xy-

coordinates) of the jth agent at time k − 1, ∆R is the radial
step size, ∆θ = 2π/Nθ and the parameters (Nθ, NR) control



the number of possible control actions. We denote the set
of all admissible control actions of agent j at time k as
Ujk = {sj,1k , sj,2k , ..., s

j,|Uk|
k } as computed by Eqn. (4).

C. Single Agent Sensing Model
The ability of an agent to sense its 2D environment

is modeled by the function pD(xk, sk) that measures the
probability that a target with kinematic state xk at time k is
detected by an agent with state sk. More specifically, when
xk ∈ X 1 the sensing capability of the agent is given by:

pD(xk ∈ X 1, sk) =

{
pmax
D , if xk ∈ Sa(sk)

0 , if xk /∈ Sa(sk)
(5)

where Sa(sk) denotes the agent’s sensing area which in
this work includes all xy points that satisfy the equation
max{|x− sx|, |y − sy|} = a

2 , i.e. a square region with total
area a2 units, centered at sk = [sx, sy]> and pmax

D denotes
the probability of the sensor to detect true targets inside its
sensing range. On the other hand, the agent detects virtual
target inside its sensing range with probability 1 i.e. pD(xk ∈
X 0, sk) = 1 when xk ∈ Sa(sk) and pD(xk ∈ X 0, sk) = 0
when xk /∈ Sa(sk). In addition, any two agents with states
sik and sjk are able to communicate with each other when∥∥∥sik − sjk∥∥∥

2
≤ CR where CR is the communication range.

D. Multi-object dynamics and measurement models
Multiple independent targets can exist and evolve inside

the surveillance region. True targets (i.e. with label ` = 1)
can spawn from anywhere in the state space X 1 and target
births and deaths occur at random times. This means that
at each time k, there exist n`=1

k true targets with kinematic
states x1

k, x
2
k, ..., x

n`=1
k

k , each taking values in the state space
X 1 where both the number of true targets n`=1

k and their
individual states xik,∀i ∈ n`=1

k are random and time-varying.
The multi-target (or multi-object) state of the true targets is
thus represented as the RFS X`=1

k ∈ F(X 1) which evolves
in time according to: X`=1

k =
⋃

xk−1∈X`=1
k−1

Ψ(xk−1) ∪Bk

where X`=1
k−1 is the multi-target state of the true targets of

previous time-step, Ψ(xk−1) is a Bernoulli RFS [15] which
models the evolution of the set from the previous state,
with parameters (pS(xk−1), πk|k−1(xk|xk−1)). Thus a target
with kinematic state xk−1 continues to exists at time k with
surviving probability pS(xk−1) and moves to a new state xk
with transition probability πk|k−1(xk|xk−1). Otherwise, the
target dies with probability 1 − pS(xk−1). The term Bk is
the RFS of spontaneous births [14].

The virtual targets i.e. (` = 0) on the other hand do
not exhibit any birth and death events, and their number
n`=0
k = n`=0 is constant and known (i.e. sampled uniformly

from the surveillance area at k = 0). Thus the multi-target
state at time k is given by Xk = X`=1

k ∪X`=0
k where X`=0

k
is the set of all virtual targets in the surveillance region with
|X`=0

k | = n`=0 ∀ k. In the rest of the paper we abbreviate
X`=1
k = X1

k and X`=0
k = X0

k . At time k, an agent receives
a finite set of measurements (i.e. measurements generated
from the detected true targets and from clutter) denoted as
Zk. This RFS has the form: Zk =

⋃
xk∈X1

k

Θ(xk) ∪Kk where

Θ(xk) is a Bernoulli RFS which models the target generated
measurements with parameters (pD(xk, sk), gk(zk|xk, sk)).
Thus a true target with kinematic state xk at time k is de-
tected by the agent with state sk with probability pD(xk, sk)
and receives a measurement zk with likelihood gk(zk|xk, sk)
or is missed with probability 1 − pD(xk, sk) and generates
no measurements. Additionally, an agent can receive false
alarms measurements i.e. the term Kk is a Poisson RFS
which models the set of false alarms or clutter received by
an agent at time k with PHD κk(zk) = λfc(zk), where in
this paper fc(.) denotes the uniform distribution over Z and
λ is the average number of clutter generated measurements
per time-step.

V. PROPOSED APPROACH

In this section we describe how we have extended the
classical PHD filter to propagate in time the SAT-density
and next we discuss how using the SAT-density the agents
cooperate to produce joint search-plans and resolve tracking
overlaps.

A. Search-and-Track Density
During a search and track mission, a single agent is

required to be able to perform the following tasks: a)
simultaneously estimating the time-varying number of targets
and their states from a sequence of noisy measurements and
b) efficiently searching the surveillance region in order to
maximize the probability of finding targets.

The first task can be accomplished by recursively com-
puting and propagating in time, the PHD of the full multi-
target posterior distribution using the PHD filter [14]. In
order to accomplish the second task, the agent needs to: a)
keep track of the visited (i.e. searched) and unvisited regions
of the surveillance area, b) intelligently estimate when and
how often certain search regions need to be revisited (i.e.
searched again), and c) generate efficient search plans for
searching the area. To do that we assume that the agent stores
a discrete representation of the environment in its memory in
the form of a graph G = {V, E} termed as search map, where
each node v ∈ V corresponds to a region rv ⊂ A in the
surveillance area where

⋃
v rv = A. The agent recursively

computes the search value psearch(rv) ∈ [0, 1], v ∈ V of
each region and uses this information to decide how often
to visit a particular region and how to generate search-plans
for efficiently searching the surveillance area.

With this in mind, we have extended the classic PHD
filter in order to recursively compute the search density in
addition to the target density. At each time-step we use the
target density to estimate the number of targets inside the
agents’ sensing range and the search density to compute
the search values of every region in the surveillance area.
More specifically, the predicted SAT-PHD at x ∈ X can be
computed as:

Dk|k−1(x|Z1:k−1) = bk(x ∈ X 1) +∫
X 1

pS(x′)πk|k−1(x ∈ X 1|x′)Dk−1(x′|Z1:k−1)dx′+ (6)[(
1− pD(x ∈ X 0, sk−1)

)
Jk(x ∈ X 0) + pD(x ∈ X 0, sk−1)

]
·Dk−1(x ∈ X 0|Z1:k−1)



where bk(x) is the PHD of target births, pS(x) is the
probability that a target with state x will survive in the
next time step and πk|k−1(x|x′) is the single-target transition
density, pD(x, sk) is the sensing model defined in Eqn. (5)
and Jk(x) ∈ [0..1] is a function that determines the decay
value of the virtual target with state x. The first two lines
of Eqn. (6) are due to the classic PHD filter which are used
to predict the target density at x, whereas the 3rd line is
used to predict the search density operating only on virtual
targets. In essence, the states of all virtual targets outside
the agent’s sensing range are adjusted accordingly to reflect
the fact that they are not being observed. This property is
used to generate search plans which will guide the agent to
visit areas that have not been recently visited. The updated
SAT-PHD density is given by:

Dk(x|Z1:k) =
[
1− pD(x ∈ X 1, sk)

]
Dk|k−1(x ∈ X 1|Z1:k−1)

+

[∑
z∈Zk

pD(x ∈ X 1, sk) · gk(z|x ∈ X 1, sk)

κ(z) + τ(z)

]
·

Dk|k−1(x ∈ X 1|Z1:k−1) +
pD(x ∈ X 0, sk)

|A|
(7)

+
[
1− pD(x ∈ X 0, sk)

]
Dk|k−1(x ∈ X 0|Z1:k−1)

where |A| is the total area of the surveillance region and
τ(z) =

∫
X 1 pD(x′, sk)gk(z|x′, sk)Dk|k−1(x′|Z1:k−1)dx′. In

the above equation the last term was added to the classical
PHD filter update step in order to adjust the search density
inside the agents sensing range to account for the agent’s
updated position sk. Finally, the search value psearch

k (rv) of
a particular region rv ⊂ A, v ∈ V can be computed by
integrating the SAT-PHD in rv as follows:

psearch
k (rv) =

∫
rv
Dk(x ∈ X 0|Z1:k)dx

|rv||A|−1
(8)

where |rv| is the area of region rv . Finally, the number of
true targets n̂k inside the area R ⊆ A can be computed
by integrating the SAT-PHD in R as n̂k(R) =

∫
R
Dk(x ∈

X 1|Z1:k)dx (rounded to the nearest integer) and the multi-
target state X1

k can be estimated by finding the n̂k(R) highest
peaks of the PHD as in the original PHD filter.

B. Multi-agent Searching
The search objective is to find the optimal control actions

that will move the agent along areas that have not been
explored for some time and could potentially reveal new
targets. To address this challenge, we first discuss how
searching takes into account the search map derived from
the SAT-PHD filter and how low level controls employ the
computed paths to steer the agent across the field.

a) Search planning: Given the search map G = (V, E)
where the set of edges in E connect adjacent nodes, the cost
cij on edge i 7→ j is defined as the Euclidean distance
between the particular regions in the field. For each node
on this graph, a search value psearch(rv), v ∈ V is computed
using Eqn. (8). This value varies between 0 and 1, where 0
indicates that the particular node (and hence region in the
field) has not been searched and 1 indicates that the region
has just been visited. The SAT-PHD recursion in Eqn.(6) -

(7) indicates how the search value decays over time in order
to steer agents to revisit particular regions in the field.

Using psearch, we then define the set of unvisited nodes V̄
as the set of nodes for which the search value goes below
a certain threshold, i.e., psearch(rv) ≤ β, v ∈ V̄ and thus
indicating that those nodes need to be revisited. Given V̄ and
the initial location sk of agent k, we would like to compute
closed walks starting at sk to visit nodes in V̄ with the least
cost cij in order to search the field for targets. Note that
computing optimal closed walks with the least cost can be
achieved by employing variations of the vehicle routing prob-
lem. However due to the high computationally complexity of
the optimal algorithms, this approach can not be employed in
practice. Hence, an alternative heuristic approach is followed
hereafter to devise closed walks efficiently in time. Similar to
the path-cheapest-arc heuristic [16], each walk is set to start
at sk, and a path is constructed greedily by inserting each
new edge with the least cost emanating from the head node
of the last edge added. The process repeats until all nodes
have been visited or when no more edges can be added.

b) Control: Given the computed closed-walk sequence,
the objective is then to take a control action uk ∈ Uk that
will move the agent across the designated path. To achieve
this, a list of nodes to-be-visited is maintained, and each node
is marked as visited whenever the agent moves to a position
where the particular node is within its sensing range. The
control objective can simply be expressed as follows, u?k =
arg min ξsearch(uk, v), where v ∈ V̄ indicates the location
of the next unvisited node in the list and ξsearch returns the
Euclidean distance between the current position of the agent
and the next unvisited node. By iteratively visiting the close-
walk sequence, the envisioned look-ahead search control is
achieved by each agent.

c) Cooperation: Whenever two or more agents are in
communication range they exchange their search densities.
Agents then merge their copies using a simple max operation
of local and received values and compute a fused search map
which now contains the search-path histories of the involved
agents. The agents can then compute a joint search-plan as
follows: Let S̄ be the subset of agents in communication
range and assume that each agent knows the number |S̄|
and position sjk, j ∈ S̄ of cooperating agents in its vicin-
ity. Then iteratively each agent computes |S̄| closed walks
incrementally by adding one node at a time in each agent’s
path from the list of all unvisited nodes in V until there are
no more unvisited nodes. A new node is added in an agent’s
path only if the head node of all possible edges to traverse
(starting from the edge with the least cost) is not flagged as
visited and the tail node of that edge is the last node added
in the particular walk.

C. Multi-agent Tracking
In this subsection we discuss: a) how multiple agents are

cooperating to detect and resolve tracking overlaps and b)
how the agents select control actions in order to accurately
track multiple targets.

a) Tracking overlap detection: This problem arises when
a target is being tracked by more than one agent. This is
something unwanted since valuable system resources are
wasted for performing the same task. Consider, the scenario



where 3 targets, which are being tracked by two different
agents, approach each other. Eventually, the targets will be
detected and tracked by both agents at the same time. We
denote this situation as a tracking overlap event, which we
wish to detect and resolve. To do so, and instead of solving
the combinatorial problem that arises (which requires the
enumeration of joint control actions among agents and future
multi-target states over a finite horizon), in this work we
propose a computationally cheaper way to tackle the tracking
overlap problem.

More specifically, in order to reduce the computational
and communication overhead, we allow any two agents to
merge and track the same targets but only for a short period
of time. More specifically, we consider that each agent can
track multiple targets independent of other agents. When,
the trajectories of two or more tracking agents converge the
agents exchange information to determine whether or not
the exact same targets are being tracked. Once, two agents
have determined that they track exactly the same targets, one
of them generates a search plan and exits the tracking. The
above procedure begins when two or more tracking agents
have overlapping sensing ranges.

Let the predicted multi-target states (regarding the true
targets) of any two agents with states sik−1 and sjk−1 be
X̂1,i
k|k−1 and X̂1,j

k|k−1, respectively. The predicted multi-target
state X̂1

k|k−1 is computed from the predicted SAT-PHD
i.e. Eqn. (6) by selecting the n̂k|k−1 highest peaks where
n̂k|k−1 =

∫
Dk|k−1(x ∈ X 1|Z1:k)dx. Also, let |X̂1,i

k|k−1| =

m and |X̂1,j
k|k−1| = n denote their cardinalities, i.e. the

number of predicted targets in the set, with n ≥ m and
n,m 6= 0. When Sa(sik−1) ∩ Sa(sjk−1) 6= ∅, the agents
exchange their predicted multi-target states to compute the
incremental tracking overlap score as:

∆Lck(X̂1,i
k|k−1, X̂

1,j
k|k−1) =[

1

n

(
min
π∈Πn

m∑
l=1

dc(x
i
l, x

j
π(l))

2 + (n−m) · c2
) ] 1

2

(9)

where xi ∈ X̂1,i
k|k−1, xj ∈ X̂1,j

k|k−1 and Πn denotes the set of
all permutations of size m taken from the set {1, 2, ..., n}.
The function dc(x, y) = min(c, ‖x− y‖2) where the param-
eter c > 0 penalizes the cardinality mismatch between two
sets. When n < m Eq. (9) becomes ∆Lck(X̂1,j

k|k−1, X̂
1,i
k|k−1).

The above equation is called the optimal sub-pattern assign-
ment (OSPA) [17] of order 2. Then the cumulative tracking
overlap score for the time-window [κ : K] is defined as:

Qκ:K(siκ−1, s
j
κ−1) = (10)

K∑
k=κ

I(Sa(sik−1),Sa(sjk−1)) ·∆Lck(X̂1,i
k|k−1, X̂

1,j
k|k−1)

where the function I(A,B) checks if the intersection of
two regions A and B is non-empty and returns 1, otherwise
returns ∞. As we can see, the cumulative tracking overlap
score will generate a low score if two agents track the exact
same targets over a certain period of time. In other words
when two agents have overlapping sensing ranges and they
track the same number of targets with small positioning

errors the cumulative tracking overlap score is minimized.
Finally, in order to determine if there is tracking overlap
between two agents over a time-window the cumulative
tracking overlap score is tested against a pre-determined
threshold QTh. If Qκ:K ≤ QTh then the two agents track
with high certainty the same targets and thus one of them
is removed from tracking. The removed agent generates a
search plan and begins in the next time-step to search the
surveillance region.

b) Control: Finally the objective of tracking control is to
find the optimal control action uk ∈ Uk that must be taken
at time step k by each agent in order to maintain tracking
of the detected targets. We should point out that the control
action uk affect the received measurements Zk which in turn
affects the multi-target state estimate X̂1

k during the update
step. Thus, ideally to optimize the control actions in this case
it would require the knowledge of the future measurements.
As a consequence, the objective function to optimize depends
on future unknown measurements. Let this objective function
be denoted as ξtrack(uk, Zk).

Since, the future measurement set Zk is not available until
the control action uk is applied, we generate the predicted
measurement set Zk|k−1 and we use it in place of Zk. The
predicted measurement set Zk|k−1 for each control action is
generated as follows:

Zk|k−1 = Zk|k−1 ∪ {arg maxz gk(z|x, uk)}
∀x ∈ X̂1

k|k−1, ∀uk ∈ Uk (11)

where X̂1
k|k−1 is the predicted multi-target state for

the true targets. Thus the problem becomes: u?k =
arg max ξtrack(uk, Zk|k−1). To optimize the track objective,
the following steps are performed: The predicted SAT-PHD
Dk|k−1(x|Z1:k−1) is first computed from Eqn. (6) without
performing any control action. From this, we compute the
predicted multi-target state X̂1

k|k−1 and for each admissi-
ble control action uk ∈ Uk we generate the predicted
measurement set Zk|k−1 using Eqn. (11). For each pair
(uk, Zk|k−1) we perform a pseudo-correction step using Eqn.
(7) to produce the (pseudo) posterior SAT-PHD density D̂k.

That said, we consider the information gain between
the predicted fk|k−1(X|Z1:k−1) and the (pseudo) updated
f̂k(X|Z1:k−1, Zk|k−1, uk) multi-target distributions as a
measure of decreasing the uncertainty of the estimated multi-
target state. The objective is then to maximize the infor-
mation gain between the two multi-target distributions. To
measure the information gain, we use as ξtrack(.) the Renyi
divergence [18]–[20] which in our case is given by:

ξtrack(uk, Zk|k−1) =

∫
X 1

Dk|k−1(x)dx +

α

(1− α)

∫
X 1

D̂k(x|Zk|k−1, uk)dx − (12)

1

(1− α)

∫
X 1

D̂k(x|Zk|k−1, uk)αDk|k−1(x)1−αdx

where 0 < α < 1 determines the emphasis given on the tails
of the two distributions.
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Fig. 1. The figure shows the maneuvers of 2 agents for the task of search-and-track in a representative simulated scenario.

VI. EVALUATION

A. Experimental Setup
In our experimental setup we assume that the targets

maneuver in an area of 100m × 100m. The target dynamics
are modeled according to the near constant velocity model
with the process noise being Gaussian. The single target tran-
sitional density is given by π(xk|xk−1) = N (xk;Fxk−1, Q)
where:

F =

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , Q =

T/3 T/2 0 0
T/2 T 0 0

0 0 T/3 T/2
0 0 T/2 T


with sampling interval T = 1s. The target survival probabil-
ity from time k− 1 to time k is constant ps,k(xk−1) = 0.99
and does not depend on the target’s state. Once an agent
detects a target it receives range and bearing measurements
thus the measurement model is given by hk(xk, sk) =[
‖sk − Hxk‖2 , arctan

(
sy−y
sx−x

)]
where H is a matrix which

extracts the target position from its state vector. The single
target likelihood function is then given by g(zk|xk, sk) =
N (zk;hk(xk, sk),Σ>Σ) and sigma is defined as Σ =
diag(σζ , σφ). The standard deviations (σζ , σφ) are range
dependent and given by σζ = ζ0 + βζ ‖sk − Hxk‖22 and
σφ = φ0 + βφ ‖sk − Hxk‖2 respectively with ζ0 = 1m,
βζ = 5 × 10−3m−1, φ0 = π/180rad and βφ = 10−5rad/m.
Moreover, the agent receives spurious measurements (i.e.
clutter) with fixed Poisson rate λk = 10 uniformly dis-
tributed over the measurement space. The agent’s sensing
model parameter pmax

D = 0.99 and the agent sensing area
is S10(sk) = 102 m2. The agent’s dynamical model has
radial displacement ∆R = 2m, NR = 2 and Nθ = 8
which gives a total of 17 control actions, including the initial

position of the agent. The function Jk(x) is constant and
state independent and equal to Jk(x) = 0.999 ∀x, k. The
parameter α in Eqn. (12) is set to 0.5 and finally, the agent
communication range is CR = 50m. In order to handle
the non-linear measurement model, we have implemented
a Sequential Monte Carlo version of the PHD filter [21].

B. Results
A representative search-and-track scenario with 2 agents

and 2 targets, which takes place during 200 time-steps is
shown in Fig. 1a - 1h. In this scenario, 2 agents enter at
k = 1 the surveillance area of size 100m × 100m at the
locations marked with � in Fig. 1a-1b with coordinates
(10, 60) and (60, 10) for agents 1 and 2, respectively. The
target birth/death times are k = 104/179 and k = 144/182
for targets 1 and 2, respectively. The target birth locations
(marked with 4) are (50, 69) and (41, 29) for targets 1
and 2 respectively, and their corresponding death locations
(marked with ×) are (80, 31) and (84, 33) as shown in Fig.
1h. At each time-step, the agents in communication range
cooperate in order to jointly search the surveillance area and
track the detected targets. Otherwise, the agents optimize
their individual objective and operate on their own. This
is shown in Fig. 1a - 1b where the two agents are not in
communication range and no targets are being estimated to
exist inside their sensing range.

More specifically, at k = 1 agents 1 and 2 generate a
search plan that they will use in order to traverse (i.e. search)
the surveillance area. Note here that the produced search
plans shown in Fig. 1a - 1b if executed, will visit every node
(marked with ? and ◦ for agents 1 and 2 respectively) in the
search map and as a consequence the agents will search the
whole surveillance region. Figure 1c shows the execution of
the aforementioned search plans during time-steps k = 1 :



16 and the trajectories of agents 1 and 2 according to their
dynamical models.

At time-step k = 16 the two agents appear to be in
communication range where they exchange and fuse their
search densities and generate a joint search plan as discussed
in subsection V-B. As a result the surveillance area that
has not been searched so far is partitioned into two non-
overlapping regions as shown in Fig. 1d. In essence the joint
search plan assigns the nodes v ∈ V which are associated
with regions r ⊂ A to the two agents in such a way so
that the overall area is searched as efficiently as possible.
Thus during time-steps k = 17 : 104, the two agents start
executing the joint search plan as shown in Fig. 1e - 1g for
time-steps k = 26, k = 50 and k = 104. Fig. 1e - 1g also
illustrates the fused search densities for the same time-steps.
Next, at time-step k = 104 target 1 is born inside agent’s 2
sensing range. The agent estimates the presence of this target
at k = 105. As a consequence, agent 2 exits the joint search
plan and begins to track target 1. Because at k = 104 the two
agents happen to be in communication range this information
is transferred to agent 1 which recalculates its search plan to
account for area dropped by agent 2. This is shown in Fig.
1h. As you can observe, agent 1 recalculates its search plan
which now includes nodes that have been initially assigned
to agent 2. In addition, the same figure shows the search
trajectory of agent 1 during time-steps k = 105 : 182 and
the tracking trajectory of agent 2 during the same period.
At k = 144 target 2 is born which is also being tracked by
agent 2 during time-steps k = 147 : 182. Between time-steps
k = 147 : 179, agent 2 tracks both targets as shown by the
agent’s trajectory and estimated target positions. Finally, the
combined search density of the two agents for k = 182 is
shown (in this case, we have manually combined the two
search densities in order to show the overall searched area,
since the two agents are not in communication range at
k = 182).

VII. CONCLUSION

In this work a novel decentralized cooperative multi-agent
search-and-track framework has been proposed based on the
theory of random finite sets (RFS). The Probability Hypoth-
esis Density (PHD) filter has been extended to recursively
propagate in time the search-and-track density which is used
to produce cooperative searching and tracking strategies. The
proposed framework is flexible and accounts for many of the
challenges present in search and rescue missions including
the unknown and time varying number of targets, the noisy
sensor measurements, the uncertain target dynamics and
the limited sensing range of the agents. Future work will
focus on the real-world implementation and evaluation of
the proposed framework.
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