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Abstract—Over the past few years, a plethora of advance-
ments in Unmanned Areal Vehicle (UAV) technology has paved
the way for UAV-based Search and Rescue (SAR) operations
with transformative impact to the outcome of critical life-saving
missions. This paper dives into the challenging task of multiple
castaway tracking using an autonomous UAV agent. Leveraging
on the computing power of the modern embedded devices,
we propose a Model Predictive Control (MPC) framework
for tracking multiple castaways assumed to drift afloat in the
aftermath of a maritime accident. We consider a stationary
radar sensor that is responsible for signaling the search mission
by providing noisy measurements of each castaway’s initial
state. The UAV agent aims at detecting and tracking the moving
targets with its equipped onboard camera sensor that has
limited sensing range. In this work, we also experimentally
determine the probability of target detection from real-world
data by training and evaluating various Convolutional Neural
Networks (CNNs). Extensive qualitative and quantitative evalu-
ations demonstrate the performance of the proposed approach.

Index Terms—UAS model predictive control, Multiple cast-
away tracking, Marine Environment, Computer Vision, Neural
Networks

I. INTRODUCTION

Tracking targets in a sea environment is a challenging
task due to the vast operation environment resulting in
sparse observations, leading to estimation errors in their
positions. Recent advancements in Unmanned Aerial Vehicle
(UAV) technology have enabled their utilization in various
emergency response operations, including search-and-rescue
(SAR) [1], [2] and search-and-track (SAT) missions [3], [4].
Moreover, UAVs are increasingly being used in domains
such as critical infrastructure inspection [5], surveillance
[6], disaster management missions [7], [8], and emergency
response [9].

In this paper, we propose an autonomous UAV system
for maritime disaster management, security, and safety. The
number of lost ships and shipwrecks worldwide has decreased
compared to a decade ago, but it is still alarmingly high
[10]. Moreover, the recent migration problem has forced
many people to take the risk of illegal sea travel, resulting
in a high number of castaways. These effects are especially
evident in the Mediterranean Sea, where arrivals through the
Mediterranean Sea to European countries such as Italy, Spain,
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Greece, and Cyprus have exceeded one hundred thousand
people, and almost two thousand people are currently con-
sidered deceased or missing according to the United Nations
High Commissioner for Refugees [11].

Therefore, in this work, we propose a Model Predictive
Control (MPC) framework for tracking multiple castaway
targets in maritime environments using an autonomous UAV
agent. The proposed MPC formulation employs a Non-linear
Mixed Integer Program (NMIP) to determine the optimal
control inputs of an autonomous UAV agent over a finite
rolling horizon. This enables accurate multiple castaway
tracking and monitoring. Our approach generates the UAV’s
control inputs in an online fashion so that the overall tracking
error for monitoring multiple castaway targets is minimized.
Specifically, we consider each castaway’s predicted location
uncertainty and minimize the distance between the castaway
and the UAV’s onboard camera sensor, thereby gathering
observations with the lowest noise possible. The key con-
tributions of this work are:

• We propose a Model Predictive Control (MPC) frame-
work that allows an autonomous UAV agent to track
multiple castaways. To achieve this, we formulate an
NMIP to compute the optimal control inputs of the UAV
over a finite rolling planning horizon, which minimizes
the tracking error over multiple targets.

• We experimentally analyze the target detection probabil-
ity using water buoys by training various Convolutional
Neural Networks (CNNs) from images taken by the
UAV from various altitudes. From the evaluation of the
CNNs, we construct a piece-wise linear function that
describes the confidence of detection probability based
on the UAV’s altitude.

• Finally, we create a new open-source dataset consisting
of aerial images of water buoys taken with a UAV from
various altitudes above sea level [12]. Different wave
conditions have also been captured to create a machine
learning object detection algorithm that reflects the chal-
lenges of castaway detection in marine environments.

The rest of this paper is structured as follows. The related
work is discussed in Sec. II. The system model and our setup
are introduced in Sec. III. The proposed approach along with
the NMIP formulation and the derivation of the detection
probability is given in Sec. IV-B. The evaluation of the
proposed approach is discussed in Sec. V, and finally Sec. VI
concludes the paper and discusses future research directions.



II. RELATED WORK

Castaway search in post shipwreck disasters has been
examined in several works in the past, assuming a number
of different setups. Xinming Hu et al. [13] explored the
use of Kalman Filtering (KF) [14] to predict the castaway
position and a Dynamic Window Approach (DWA) [15] for
the Unmanned Surface Vehicle’s (USV) path planning and
obstacle avoidance. Others have investigated the use of both
UAV and USV for aiding in the rescue and response. Xiao
Xuesu et al. [16] introduced a UAV for the use of an overhead
view camera, helping in the state estimation of the USV.
Thus, the system is able to autonomously navigate while
First Responders (FRs) can focus on task-level needs. Anibal
Matos et al. [17] took a different approach to the multi-robot
solution, utilizing a USV for a first large-scale bathymetry of
the interest area and then deploying an Autonomous Under-
water Vehicle (AUV) for the close inspection of suspicious
targeted areas. In our work, we utilize multiple instances of
KF for estimating the state of each castaway. We also employ
a single UAV for its maneuverability and its ability to rapidly
adapt between flying and hovering.

On the other hand, Ramirez et al. [18] proposed an expert
system utilizing a UAV and a USV for maritime SAR
operations with the UAV acting as a remote fast moving
sensor that assists the USV during the mission by providing
measurements about the castaways thus, letting the USV cor-
rect their estimated position using a Particle Filter (PF) [19]
for each one of them. As mentioned previously, we use
KF instead, purely for its lower computational needs since
using multiple PF on an embedded device is computationally
intensive.

The use of Non-linear Programming has also been used
widely over the years. Some have investigated an Artificial
Potential Field path planning technique for producing fly-
able paths for multi-rotor UAVs in ground target tracking
systems [20] and obstacle avoidance systems [21]. Such
techniques are beneficial for ground moving targets but, their
use has mainly been researched for tracking smooth paths.
In addition, Dai and Cochran [22] investigated the generation
of cooperative paths for UAVs that are parameterized under
the Cornu-Sprials. Such paths however, are mostly suitable
for fixed-wing aircrafts. Non-linear and Linear MPC have
also been exhaustively researched in terms of target tracking,
but most of the work has mainly been focused on ground
vehicles [23].

Many efforts have also been done for solving the problem
of UAV control in 3D environments. Yang and Sukkarieh [24]
exploited rapidly-exploring random trees for collision avoid-
ance in cluttered environments. Tisdale et al. [25] proposed
a decentralized online path planning framework for a team
of fixed wing UAVs with the purpose of search and locate
missions, while Papaioannou et al. [26] exploided a novel
control strategy for tracking mallicious UAVs and in [27] [28]
the authors explored various MPC formulations for SAR
missions in a 3D environments utilizing UAVs. In contrast,
our work focuses on optimal control of a single UAV in 3D
environment for multiple target tracking. By controlling the

UAV in all 3 dimensions, gives the ability to improve the
performance of a target tracking system, by unlocking the
capability to choose between the quality of the observation
and the effective sensing range.

In addition, research has also been done for calculating the
Probability of Success (POS) of such search missions. Do-
natien et al. [29] explained in their work how using optimal
search theory and analyzing the Probability of Containment
and Probability of Detection at the area of interest, one can
calculate the POS of the operation.

Finally, closely related to our work is the approach pre-
sented in [30]. Chang Liu and Karl Hedrick, also proposed
a framework that has the objective of minimizing the co-
variance of the target’s estimated location, by using an MPC
to control the agent’s movements. However, their work was
limited to a two-dimensional environment and to a single
ground target. Moreover, the authors did not consider any
detection probability assumptions in the sensing model of
the agent.

In this paper, we propose an MPC formulation for multiple
target tracking missions utilizing a UAV agent for tracking
multiple castaways that are assumed to be drifting afloat in
the aftermath of a maritime accident. To achieve this, we take
into account the target detection probability which is learned
from real-world data, as well as the inherent uncertainty in
the target dynamical and measurement model. Leveraging
multiple KFs to estimate each castaways’ drift at sea, the
proposed system is able to predict the castaways’ location
and provide informed position inputs to the agent’s control
system. The system minimizes the measurement noise and
simultaneously aids the throughput of Computer Vision (CV)
techniques that are usually used in such missions. As a
note, and to better simulate a real-life CV detector, we have
experimentally analyzed the target detection probability by
training various CNNs. From the evaluation of the CNNs,
we constructed a piece-wise linear function that describes
the confidence of detection based on the UAV’s altitude.
Overall, the system aims at tracking all castaways, giving
the FRs actionable information about the survivors. The pro-
posed technique considers the UAV’s kinematic and sensing
constraints, and optimizes the agent’s control actions over a
rolling finite planning horizon, which aims at minimizing the
overall tracking uncertainty.

III. PRELIMINARIES

A. System Architecture

For the proposed architecture we consider two main com-
ponents, the mission initiating system (i.e. a coastal radar)
and a UAV agent taking over the mission after initially being
alerted by the former component. Starting from the initial
sensor measurements, we initialize one KF [14] for every
target with initial priori states the measurements received
from the coastal radar. As long as the castaways are within
the field of view (FoV) of the onboard camera sensor (further
defined in Sec. III-B), the KF uses the measurement from
the onboard camera sensor to correct the prediction. When a
castaway is not within the FoV of the UAV’s onboard camera,



UAV Agent

Castaways

Shipwreck
Location

Radar
Sensor

H

Fig. 1: Multiple castaway track scenario illustration at two
time steps

then the KF is used to update the location estimates but
without the correction steps. While the KF correction steps
are not used, the uncertainty of their location increases. In
order to minimize the uncertainty and get a better estimate of
the castaways’ locations, the UAV has to observe the targets
with its camera’s limited sensing range. However, detecting
the targets is stochastic and depends on the probability
of detection (described in Sec. III-C), which is inversely
proportional to the agent’s altitude. An illustration of the
described scenario can be seen in Fig. 1.

B. Agent Dynamics and Sensing Model

In our work, the UAV agent is free to move in the
3D Cartesian space and its movement is governed by the
following discrete time, linear dynamical model:

χa
k+1 = Aχa

k +Bua
k (1)

where χa
k = [pak, v

a
k ]

T is the state of the agent at the kth time
step which is consisted from its position pak = [xa

k, y
a
k , z

a
k ]

T ∈
R3 in three-dimensional Cartesian coordinates and its veloc-
ity vak = [ẋa

k, ẏ
a
k , ż

a
k ]

T ∈ R3. The term ua
k = [ua

x, u
a
y, u

a
z ]

T ∈
R3 denotes the input control force for each dimension while
the system matrices A ∈ R6×6, B ∈ R6×3 are given below:

A =

[
I3×3 δtI3×3

03×3 ρI3×3

]
, B =

[
03×3

ξI3×3

]
(2)

The term δt denotes the sampling interval while, I3×3 and
03×3 denote the identity and zero matrix, respectively. The
parameter ρ ∈ [0, 1] is used to model air resistance whereas
parameter ξ = δt

m is used to convert the input control force
to acceleration, where m is the agent’s mass.

As mentioned previously, the agent is carrying an on-
board camera sensor. The onboard camera is capable of
detecting the castaways and measuring their 2D location i.e.,
Cartesian (x,y)-coordinates. The effective sensing area of the
onboard camera is defined by a rectangle projected on the
sea surface which’s size is further defined by the horizontal
(θh) and vertical (θv) FoVs in degrees. The horizontal (lh)
and vertical (lv) lengths of the rectangle are calculated by
lh|k = 2zak tan

(
θh
2

)
and lv|k = 2zak tan

(
θv
2

)
.

The measurement provided by the sensor is defined by the
random set Zk, which can be either empty with probability
1 − pk, pk ∈ [0, 1] or be a singleton set with probability pk
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Fig. 2: Piece wise function emulating the probability of
receiving a measurement from the sensor. Parameters were
set to α1 = 10, α2 = 100 and β1 = −0.0083, β2 = 1.083

(see Sec. III-C) with its element distributed over the state
space of the target χci

k , where ci refers to the ith castaway,
according to the probability density function pr(χci

k ). There-
fore, the PDF of Zk is given by:

f (Zk) =

{
1− pk if Zk = ∅

pkpr(χ
ci
k ) if Zk = {ycik } (3)

The single target measurement likelihood function is fur-
ther given by ycik = h(χci

k ) + w(pk) where:

h(χci
k ) =

[
1 0 0
0 1 0

]
χci
k , w(pk) ∼ N (0, p−1

k γ) (4)

w(pk) is the measurement noise, which is randomly dis-
tributed by a zero mean Normal density with standard de-
viation p−1

k γ, where γ is the scaling parameter.

C. Target detection probability

This subsection elaborates on the derivation of the proba-
bility of detection which we assume to follow a piece-wise
linear function. As previously mentioned in Sec. III-B, we
receive a non-empty measurement from the onboard camera
sensor with probability pk. Thus, probability pk is assumed
to obey the following piece-wise function(see Fig. 2):

pk =


1 if zak ≤ α1

pmin if zak ≥ α2

β1z
a
k + β2 otherwise

(5)

where, parameters α1 and α2 are used to tune the altitudes
where the probability gets at its maximum and its minimum
value. Parameters β1 and β2 are used to define the slope of
the linear function. Note that these tuning parameters must be
chosen as such as to not violate the probability rule of pk ∈
[0, 1]. The above modeling assumptions have been verified
experimentally, as discussed next in Sec. IV-B.

D. Castaway Motion Model

Each castaway is moving in 3D space and its motion
is governed by a modified version of the Stokes’ drift
equations [31]. The equations are used to model and gen-
erate the ground truth states of the castaways χci

k =
[xci

k , ycik , zcik ]T ,∀i = [1, .., C] given by (6). In partiqular
Eq. (6a) describes the water velocity in the direction of the
wave propagation that a specific castaway experiences. Thus,
the castaway’s location is updated as show in Eq. (6b).

vcik =
ωH

2
ewdci

sin (qdci − ωk) (6a)

χci
k+1 = χci

k + vcik
[
cos(φ) sin(φ) 1

]T
dt (6b)
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Fig. 3: Drift paths of four castaways induced by small
amplitude waves for the span of an hour.
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Fig. 4: Recall of each CNN at every altitude.

where ω = 2π/T is the wave frequency, H is the wave
height, w is the wave decay-rate and dci is the distance of
the ith castaway from the wave source. The wave number is
given by q = 2π/L and depends on the wavelength L. The
angle between the castaway and the wave source is given
by φ while the wave period is given by T =

√
2πL/gK

where, K = tanh (qD), D is the water depth and g
is the gravitational acceleration. The above wave equation
in (6a) assumes small amplitude waves (qH ≪ 1), deepwater
conditions (K < 1) and no wave reflections. The ground truth
drift of multiple castaways is shown in Fig. 3. The figure
shows the drift of 5 castaways induced over the period of 60
minutes.

IV. PROPOSED APPROACH

A. Determining the Target Detection Probability

To better determine a realistic target detection probability,
the proposed piece-wise linear function was validated by real-
life data of water objects and more specifically buoys. We
collected more than 10 thousand images of two different
types of buoys (white and red) in the Republic of Cyprus.
The images were taken using an off-the-shelf UAV carrying
a 4K camera from the altitudes of 10-100 meters in two
different sea conditions. The first set of images was taken
during a calm sea with zero wind while the second set, was
taken during small waves and windy conditions. Each image
was manually labeled for training a single class detector.
Four CNNs were trained at detecting buoys from the various
altitudes. The initial resolution of the images was 1920×1080
pixels and the custom dataset was split into four groups:

1st: Trained with 2300 images taken from 10 meters altitude
and validated with roughly 300 images and tested with
roughly 300 images.

2nd: Trained with 2900 images taken from 20 and 30 meters
altitude and validated with roughly 370 images and
tested with roughly 370 images.

3rd: Trained with 3700 images taken from 50 and 60 meters
altitude and validated with roughly 470 images and
tested with roughly 470 images.

4th: Trained with 1400 images taken from 100 meters alti-
tude and validated with roughly 200 images and tested
with roughly 200 images.

Manually labeling the images resulted to more than 14 thou-
sand labeled buoys. The images in the custom dataset were
split into 80% for training, 10% for validation and 10% for
testing. For training, we utilized the AlexeyAB’s version of
the Darknet framework [32] by using the YOLOv4-tiny CNN
mainly for its real-time capabilities. During training, all the
default network parameters were chosen and the YOLOv4-
tiny’s default augmentation configurations were used. The
training image size was set to 416x416 while 200 epochs of
batch 32 for each network were done. Another functionality
given by the YOLOv4 framework called random resizing was
also used. Random resizing as its name suggests, randomly
resizes the network input size every 10 batches (iterations)
form scale 0.7 to scale 1.4 while keeping the initial aspect
ratio of the image. Training of the networks was done on an
NVIDIA Tesla v100 GPU, with the validation set being used
during training. After training, each network was tested with
all the test sets, at all altitudes. This was done to derive each
networks ability of detection when given images that contain
at least one buoy. During testing, the number of true and
false positives as well as the amount of false negatives for
each network at every altitude were counted. Fig. 4 shows
the recall that each network achieved at every altitude. Recall
is calculated by dividing the count of the true positives over
the sum of true positives and false negatives. It can be seen
that our previous assumption of decreasing confidence with
increasing altitude was logical and close to truth. Thus, from
Fig. 4 we constructed the confidence of detection function
in Eq. (7) which we use in the proposed solution to mimic
the behavior of a traditional CNN at detecting overboard
castaways. A sample of three images of detected buoys can
be seen in Fig. 5. The images were taken at an altitude of
30 meters. In the first image (a), a true positive detection of
a white buoy can be seen during small amplitude waves. In
the second image (b), a single false positive detection can be
seen in the absence of buoys. Finally, in the last image (c) a
false negative detection can be seen where the detector failed
to recognize the white buoy.

fd(zak) =


1 if zak ≤ 10

0.25 if zak ≥ 100

−0.0083zak + 1.083 otherwise
(7)
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Fig. 5: Sample images of detected buoys at 30 meters altitude. Image (a) shows a successfully detected buoy. Image (b)
shows a false positive detection in the absence of buoys. Image (c) shows a false negative detection in the presence of a
buoy.

B. Model Predictive Control Formulation

To compute the vector ua
k for controlling the UAV’s

movement, a receding horizon MPC is used. The MPC is
formulated such that it does not infringe the UAV’s capabili-
ties and limitations such as horizontal and vertical speeds and
accelerations. To achieve that, we formulate an optimization
problem that minimizes the trace of the state covariance
matrix P ci

k+τ |k for each castaway’s predicted location by
controlling the input of the agent as referred at Sec. III-B. In
this work, the KF equations are employed to be able to predict
the castaway’s drift and provide estimates of its location
and the accumulated uncertainty of the open-loop system
(when no measurements are received over an extended period
of time) over the planned horizon. After being initialized
with noisy measurements about the castaway’s state, the KF
equations predict the castaway’s next state and then correct
the estimate using pseudo-measurements created by adding
noise to the predicted positions, whenever the castaway is
assumed to be within the FoV. The proposed model predictive
controller, is shown in Eq, (8a)-(8t), as a non-linear mixed
integer program.

The objective in Eq. (8a) is to minimize the trace of the
covariance matrix P ci

k+τ |k of each castaway over all the time
steps of the planning horizon where, N is the number of steps
in the receding horizon and C is the number of castaways.
Eq. (8b) defines the UAV’s dynamical model as previously
discussed in Sec. III-B. Vector ua

k+τ |k is the control input of
the UAV consisting of (ua

x, u
a
y, u

a
z) for all steps in the horizon

τ ∈ {0, ..., N − 1}. Constrain (8c) refers to the derivation of
the horizontal and vertical size of the onboard camera’s FoV.

argmin
ua
k+τ|k

C∑
i=1

N−1∑
τ=0

tr(P ci
k+τ |k) (8a)

subject to i ∈ {1, ...C} , τ ∈ {0, ..., N − 1} :
χa
k+τ+1|k = Aaχa

k+τ |k +Bua
k+τ |k ∀τ (8b)

ljk+τ |k = zak+τ |k tan(θj) ∀j, τ (8c)

djk+τ |k = Djχ
a
k+τ |k + (−1)j ljk+τ |k ∀j, τ (8d)

b
ci|j
k+τ |k =

{
1, if Ejχ

ci
k+τ |k ≤ djk+τ |k

0, otherwise
∀i, j, τ (8e)

scik+τ |k =

4∑
j=1

b
ci|j
k+τ |k ∀i, τ (8f)

bcik+τ |k =

{
1, if scik+τ |k = 4

0, otherwise
∀i, τ (8g)

χci
k+τ+1|k = Acχ̂ci

k+τ |k ∀i, τ (8h)

P ci
k+τ+1|k = AcP̂ ci

k+τ |kA
cT +Q ∀i, τ (8i)

Kci
k+τ+1|k = P̂ ci

k+τ+1|kC
T(

CP̂ ci
k+τ+1|kC

T +Rk+τ |k

)−1 ∀i, τ (8j)

χ̂ci
k+τ+1|k = χci

k+τ+1|k + bcik+τ |kK
ci
k+τ+1|k(

ycik+τ+1|k − Cχ̂ci
k+τ+1|k

) ∀i, τ (8k)

P̂ ci
k+τ+1|k = P ci

k+τ+1|k − bcik+τ |kK
ci
k+τ+1|k

CP ci
k+τ+1|k

∀i, τ (8l)

σk+τ |k = γr(zak+τ |k) ∀τ (8m)

Rk+τ |k = I2×2σk+τ |k ∀τ (8n)
ycik+τ+1|k = Cχ̂ci

k+τ+1|k + n(σk+τ |k) ∀i, τ (8o)

δua
k+τ+1|k = (ua

k+τ+1|k − ua
k+τ |k)

2 ∀τ (8p)

χa
k|k ∈ X , ua

k|k ∈ U , δua
k|k ∈ δU (8q)

b
ci|j
k+τ |k,b

ci
k+τ |k ∈ {0, 1} ∀j, i, q, τ (8r)

scik+τ |k ∈ [0, .., 4] ∀i, τ (8s)

j = [1, .., 4], q = [1, 2, 3] (8t)

For simplicity, the horizontal and vertical FoV have been
split to halves. Thus, constrain (8d) can now be used to
estimate the left, right, top and bottom limits of the FoV
in the 2D Cartesian plane. Matrix Dj ∈ R6 is used to
select the X or Y location from the agent’s state vector.
Using the FoV limits from (8d), we use constrains (8e), (8f)
and (8g) to calculate whether a target is within the FoV or
not. To do that, we check if a target is to the right of the
left limit, to the left of the right limit, below the top limit



and above the bottom limit of the FoV. Each check activates
a binary variable (8e) using the big M technique, and the
inclusion within the field of view is done by the summation
of all these variables (8f). Matrix Ej ∈ R3 is used to select
the X or Y location from the target’s state vector. If the
summation of the binaries is equal to 4 (8g), then another
binary variable is activated, indicating that the target is within
the FoV. In addition, constrains (8h) to (8l) describe the KF
estimator. Constrain (8h) regards to the target’s a priori state

estimate using the transition matrix Ac =

[
I2×2 δtI2×2

02×2 I2×2

]
.

The matrices I2×2 and 02×2 represent the identity and zero
matrix respectively while δt defines the sampling interval.
We use the KF only for the (X,Y) location of the target
in the 2D Cartesian plane to reduce the complexity of the
system. Estimating the target’s position in the Z axis can
be neglected due to its very small variations. Constrain (8i)
computes the a priori covariance matrix. Matrix Q is con-
stant and it represents the covariance of the process noise.
Constrain (8j) computes the KF gain. Due to the inverse
in this constrain, we needed to use non linear constrains
in our formulation. Subsequently, constrain (8k) calculates
the posteriori state estimate of the target using a psuedo-
measurement derived in constrain (8o) and constrain (8l)
calculates the posteriori covariance matrix of the target’s
state estimate. Similar to [30] we handle the intermittent
observations of each target with the use of the technique
described in [33]. However, we apply the technique within
the proposed NMIP formulation with the planned horizon’s
observation binary variables bcik+τ |k. Further, constrain (8m)
is used to create the measurement’s standard deviation using
the tuning parameter γ and function r(zak+τ |k) which returns
a number in the range [0, 1] depending on the agent’s alti-
tude simulating the piece-wise function in Eq. (7) defined
in Sec. IV-A. Thus, the measurement’s standard deviation
increases with the increase of altitude. The covariance of
the observation noise is calculated using the aforementioned
standard deviation as shown in constrain (8n). As explained
above, in the planned horizon, we use a pseudo-measurement
to estimate the target’s location and covariance matrix in the
future. The pseudo-measurement is derived in constrain (8o)
and it is created by adding n(σk+τ |k) ∼ N (0, σk+τ |k), a zero
mean Gaussian noise to the a priori state estimate of the
castasway’s location. Matrix C ∈ R2×3 is the observation
matrix and is used to get the X and Y position from the
target’s state vector. Constrain (8p) is employed to smooth
the transition between the forces in the horizon by bounding
the squared difference between each two consecutive forces
in the horizon. Finally, Eq. (8q) ensures that the UAV is kept
within the 3D space boundaries set by the X and the input
vector is within the realistic capabilities U of the agent.

V. SIMULATION EXPERIMENTS

This section elaborates on the simulation setup and pro-
cedure which was used to evaluate the proposed approach.
Sec. V-A describes the setup used including the UAV’s model
parameters and the computation of the castaways ground truth

Fig. 6: Environment visualization during the first 35 time
steps of the operation.

trajectories. Using this setup, Sec. V-B provides simulation
results and elaborates on key findings and insights.

A. Simulation Setup

As described in Sec. III-D, we create ground truth castaway
drifts that are subsequently used to evaluate our framework
in simulation. The scenario considered the drift induced
after one hour of simulation, with randomly generated wave
sources of various amplitudes H , decay-rates c and wave-
lengths L. For all runs the water depth D was constant and
both small amplitude (q · H ≪ 1) and deepwater (K < 1)
conditions were satisfied. The ground truth drifts used in
the simulation are plotted in Fig. 3 where each colored line
corresponds to a castaway’s path.

The measurements given by the stationary radar at the
beginning of the mission and the measurements given by
the onboard camera are generated by adding a zero mean
Gaussian noise to the ground truth of each castaway. It should
be noted that the variance of the added noise is different
between the two sensors and in the case of the onboard
camera it is proportional to the agent’s altitude, with the radar
sensor having the biggest variance. Also, the probability of
detection is inversely proportional to the altitude of the UAV
agent as described in Sec. III-C. In this work we do not
investigate the problem of data association and assume that
the agent is able to distinguish between each target.

For the agent’s motion and input boundaries aforemen-
tioned in Sec. IV-B, we used realistic constrains that were
taken from off-the-shelf UAVs readily available in the market.
As such, the agent’s velocity was limited to ±11m/s in
the horizontal axes and to ±3m/s in the vertical axis.
Acceleration was limited to ±2m/s2 for all 3 dimensions
while the FoV was set to 69◦ horizontally and 54◦ vertically.
Finally, the number of steps in the rolling horizon was set to
N = 5.

A 3D plot of the operation environment is shown in Fig. 6.
There are four castaways represented by the yellow, blue,
purple and orange spheres. The UAV agent is represented
with a black square while the onboard camera’s sensing area
is visualized with the dashed rectangle. In this figure, the
sensing area at each one of five sections is plotted as well as
the executed path of the UAV is visualized with the colored
line. The colormap represents the change in time.



TABLE I: Experimental Execution Times [s]

C = 2 C = 4

N = 3 0.1290 0.2898
N = 5 0.3897 1.5880
N = 7 1.3814 6.4169

B. Simulation Results

Several monte carlo simulations were conducted and in
each simulation, we randomly placed the agent’s initial posi-
tion in close proximity to the castaways but not necessarily
having the castaway’s within the agent’s FoV. Fig. 7 shows
the first 35 time steps during the simulation which has
been divided into 5 sections (a) to (e). In this figure, the
behavior of the agent can be observed. The agent moves
back and forth between the four targets with the aim of
gathering measurements with the lowest altitude possible.
This has the result of minimizing the covariance matrix of
each target independently, since the measurement’s noise is
inversely proportional to the agent’s altitude. If the agent
cannot traverse between the targets in the given horizon due
to physical limitations in its dynamical model, it increases
its sensing area by increasing its altitude, thus achieving
coverage of all the targets. Fig. 7 (f) we show both the
variation of the agent’s altitude along with the three control
inputs. As mentioned in the NMIP objective (8a), our aim
is to minimize the trace of the covariance matrix P ci

k+τ |k of
each target. As such in Fig. 8 its shown that the covariance
of each target is kept as low as possible during the duration
of the simulation. The fluctuation on the value of each trace
is caused by the back and forth behavior of the proposed
controller. For ease of readability, only the first 35 time steps
of the trace value were plotted and the trace values are shown
in log scale across the y-axis.

Finally, we have investigated the computational complexity
of the proposed approach. In order to do that, we have
recorded the average time required to optimally solve the
proposed NMIP problem, for various configurations of the
planning horizon length (N ) and number of targets (C), as
depicted in Table. I. Each setup was solved for 1800 times
and the cumulative average execution time was recorded.
Note that the numbers given in Table. I are the amount of
seconds needed to solve the proposed NMIP once for the
planned horizon. The simulations were conducted on a server
machine with an Intel Xeon E5-2680 processor and 256GB of
RAM using MATLAB R2020B and Gurobi solver 9.5.2. The
results show that the computational complexity increases with
the length of the planning horizon and the number of targets.
This is attributed mainly to the increase of the number of
binary variables that are required by the proposed controller,
which increase linearly with the length of the planning hori-
zon and the number of the targets. Although, it is well known
that large mixed integer programs (MIPs) can be intractable,
recent advances in optimization and machine learning have
demonstrated that MIPs of moderate sizes can be solved in
real-time [34]. A video animation of the whole MATLAB
simulation can be accessed at https://youtu.be/B5POJ7GV3-
s.

VI. CONCLUSION AND FUTURE WORK

This work proposed a model predictive control approach
for accurately tracking multiple castaways by computing the
UAV’s control inputs over a rolling planning horizon, which
result in the minimization of the estimation error of the states
of multiple moving castaway targets. It has been shown,
that under the realistic scenario considered in this work, the
proposed controller manages to track the multiple castaways
reliably under various sea conditions (i.e. wave parameter
configurations). Future work will investigate the extension
of this approach to multiple UAV agents, and the design of
a distributed multi-UAV system for this problem that can be
applied in real-world settings. A non-linear motion model for
the UAV agent will also be investigated to provide a more
realistic behaviour.
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