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Abstract— The ability to efficiently plan and execute search
missions in challenging and complex environments during
natural and man-made disasters is imperative. In many emer-
gency situations, precise navigation between obstacles and time-
efficient searching around 3D structures is essential for finding
survivors. In this work we propose an integrated assessment and
search planning approach which allows an autonomous UAV
(unmanned aerial vehicle) agent to plan and execute collision-
free search trajectories in 3D environments. More specifically,
the proposed search-planning framework aims to integrate and
automate the first two phases (i.e., the assessment phase and the
search phase) of a traditional search-and-rescue (SAR) mission.
In the first stage, termed assessment-planning we aim to find
a high-level assessment plan which the UAV agent can execute
in order to visit a set of points of interest. The generated plan
of this stage guides the UAV to fly over the objects of interest
thus providing a first assessment of the situation at hand. In
the second stage, termed search-planning, the UAV trajectory is
further fine-tuned to allow the UAV to search in 3D (i.e., across
all faces) the objects of interest for survivors. The performance
of the proposed approach is demonstrated through extensive
simulation analysis.

I. INTRODUCTION

Over the last several years we have witnessed an un-
precedented interest in unmanned aerial systems. Indeed,
the miniaturization and cost reduction of electronic compo-
nents and the recent technological advancements in avionics,
robotic systems and artificial intelligence has led to the
rapid growth of unmanned aerial vehicles (UAVs). This has
enabled the utilization of UAVs in search-and-rescue (SAR)
missions [1]–[4] i.e., during natural or man-made disasters
and in emergency response situations. UAVs are currently
being used by first responders mainly to provide a birds-eye
view of the incident and for conducting rapid spot searches
over inaccessible areas to locate missing people and for
damage assessment. However, in many situations searching
the affected area for survivors with a birds-eye view in not
sufficient, especially in challenging and complex environ-
ments with obstacles and occlusions, as illustrated in Fig.
1. In such emergency situations, precise navigation between
obstacles and efficient searching around 3D structures is
essential for finding survivors.

UAV-based SAR missions are quite challenging by na-
ture, with complex objectives and tight constraints. Take
for instance the real-world scenario of a missing person
in the woods depicted in Fig. 1(b). Specifically, the figure
shows a birds-eye-view of the scene from a real-world
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Fig. 1. (a) In many emergency situations, precise navigation between
obstacles and efficient searching around 3D structures is essential for finding
survivors, (b) Aerial view of a rural area taken during a SAR missing person
incident from a UAV equipped with a thermal camera.

deployment of a UAV in a SAR mission that the authors
participated to assist civil protection officers in a missing
person incident. The scene depicts the first responders and
their vehicles after the UAV took off and the surrounding
rural scenery composed of various forms of vegetation. In
the depicted thermal image, lighter color represents higher
temperatures. Evidently, trees and high foliage block any
thermal dissipation from being detected and thus make it
impossible to search for the missing person with this top-
down view. Additionally, missing people tend to find cover
under tall trees to safeguard themselves from the elements of
bad weather which makes detection from above impractical.
Although, the use of the UAV in this scenario can provide
a first assessment of the situation at hand, the chances of
finding the missing person using this tactic are very limited.

Motivated by the challenges described above, in this work
we proposed a UAV-based 3D search-planning framework
which can be utilized by first responders during search and
rescue missions. More specifically our contributions are the
following:

• We propose an integrated assessment and search plan-
ning approach which can be used to aid search-and-
rescue missions with an autonomous UAV agent. In the
assessment planning stage, a high-level plan is produced
which guides the UAV to fly over the area of interest and
gather mission critical information. Then in the second
stage, i.e., the search planning stage, the generated
search plan is further fine-tuned to allow the UAV agent
to search the objects of interest in 3D (i.e., across all
faces).

• In order to accomplish the 3D search task a number of
artificial rectangular cuboids are generated and placed
around the objects of interest that need to be searched.
Then, a model predictive control (MPC) algorithm with
linear and binary constraints is proposed, for guiding



the UAV agent through the generated cuboids. The
proposed formulation allows the problem to be solved
exactly and efficiently using off-the-shelf solvers.

• We demonstrate the capabilities and performance of the
proposed approach through extensive simulated search
scenarios.

The rest of the paper is structured as follows. Section II
presents an overview of the related work on UAV-based
trajectory planning for SAR missions. Section III presents
the proposed system architecture and Section IV develops
the system model. Section V discusses the details of the
assessment planning phase and Section VI presents the
proposed 3D search planning phase. Finally, Section VII
evaluates the proposed system and Section VIII concludes
the paper.

II. RELATED WORK

Autonomous planning and control are perhaps the two
most desired capabilities in mobile robotics. Over the last
years a plethora of methods have been proposed from aca-
demic and industrial research labs especially for the problem
of planning and control of ground robots operating in 2D en-
vironments. Although the proposed approaches have reached
a significant level of maturity, there are still challenges to be
tackled when more complex scenarios are considered i.e.,
planning and control in 3D with UAVs during search and
rescue (SAR) missions. In such scenarios the task of planning
and control is considerably more challenging mainly due
to the more demanding mission objectives (e.g., searching
with a UAV for survivors during natural disasters in three-
dimensional environments, scanning around buildings for
people in need, etc.).

UAV-based 3D trajectory planning was investigated in
[5]–[8], with the main objective being the search for a
collision-free trajectory to the goal region. More specifically,
[5] proposes a two-step trajectory planning approach using
Voronoi graph search and artificial forces. In [6], the au-
thors investigate the problem of UAV trajectory planning
in GPS-denied environments. To handle the inherited un-
certainty in these situations the authors extend the Belief
Roadmap [9] (BRM) planning algorithm with accurate state-
estimation based on stochastic-filtering techniques. The tra-
jectory planning problem studied in this work however, is
purely kinematic and ignores the UAV dynamics. In [7], a
receding horizon trajectory planning approach is proposed
for UAVs and solved using gradient-based methods whereas
in [8] the authors use rapidly-exploring random trees (RTTs)
to generate collision-free waypoints in a computationally
efficient way. At a second stage the generated waypoints
are connected with straight line segments and the resulting
path is smoothed out using cubic Bezier curves to create
a continuous curvature path which the UAV can execute.
Because of the complex and not flat terrain, the authors
in [10] develop a 3D path planning and execution method
based on D∗-Lite for search-and-rescue ground robots. In
order to reduce the computational complexity of the task,
the authors propose to decouple the problem into positioning
and orientation planning.

The work in [11] proposes a multi-agent path-planner for
detecting a static target with unknown location during search

and rescue missions. The proposed technique is exact and
is solved using mixed-integer linear programming (MILP).
However, it is based on a 2D discrete representation of the
world and it does not considers the system dynamics.

The authors in [12] investigate various discrete path-
planning techniques for searching survivors with UAVs dur-
ing disasters, including artificial potential fields (APF), fuzzy
logic and genetic algorithms (GA). The works in [13]–
[16] develop searching-and-tracking (SAT) approaches for
searching an area of interest with multiple UAV agents and
tracking multiple targets of interest. These works however are
myopic and are based on a 2D representation of the world.

More recently the work in [17] investigated the problem
of search planning during SAR missions using UAVs. The
authors formulate the trajectory planning problem as a model
predictive control (MPC) problem and they solve it using
particle swarm optimization (PSO). This technique used a
2D coordinated kinematic model for the UAVs and the search
planning was conducted in two-dimensions. Detailed surveys
discussing the various trajectory/path planning methods in
the literature and their applications can be found in [18]–
[21].

Compared to the related work the most notable differen-
tiating factors of this work are a) the proposed two-stage
search planning architecture which captures the increasing
level of complexity of the various phases of a SAR mission
and b) the necessity to search in 3D the objects of interest
from all views in order to search for survivors.

III. SYSTEM ARCHITECTURE

SAR missions typically consist of three phases [22], [23]
namely a) assessment, b) search and c) rescue. The goal
of the assessment phase is the determination of the course
of action. This is a critical phase in which the rescue team
assesses the damages and the hazards in the vicinity of the
affected area in order to prepare and organize the search
and rescue mission. On the other hand the goal of the
search phase is to conduct efficient, organized and thorough
searches in the affected area in order to located survivors
as efficiently as possible. Search operations when possible
follow optimized search patterns which have been planned
ahead in order to increase the efficiency of the search. In
addition, the search team is often required to search around
and along large structures/buildings, below bridges and under
high foliage in order to locate people in need. Finally,
during the last phase, people are given medical aid and are
transported to safety.

The proposed approach aims to integrate and automate
the first two phases (i.e., the assessment and the search
phases) of a traditional SAR mission with a single UAV
agent. The proposed approach is illustrated in Fig. 2. In the
first phase the human operator specifies the critical areas
(as waypoints) to be visited in order for the rescue team
to assess the incident at hand. In the second phase a more
detailed specification is given regarding the mission which
allows the UAV agent to search the objects of interest across
all faces in 3D.

In this paper we assume that a controllable flying agent
or a UAV, operates inside a bounded 3D environment which
contains a) objects of interest which need to be searched (i.e.,
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Fig. 2. Overview of the proposed search planning system architecture. The proposed framework aims to automate the first two phases (i.e., the assessment
phase and the search phase) of a traditional SAR mission with a UAV agent.

searched across all faces) and b) obstacles that need to be
avoided.

Let the set of all objects of interest inside the surveil-
lance region that need to be searched be denoted by J =
{j1, j2, · · · , j|J|}, with the set cardinality |J | denoting their
total count. Similarly, we denote the set of all obstacles in the
environment by Ξ = {ξ1, ξ2, · · · , ξ|Ξ|}. We assume that the
UAV agent is controllable and evolves in time according to a
discrete-time dynamical model. Additionally, we assume that
the agent is equipped with a camera system, with finite field-
of-view (FoV), which uses for perceiving its surroundings.

In the first stage, termed Assessment planning, we aim to
derive a high-level 3D search plan in order to acquire more
information about the objects of interest in the set J . This
plan is generated in accordance to the agent dynamics and
optimizes a simplified mission objective (i.e., minimizing the
proximity of the agent with a set of waypoints). In this stage,
the 3D objects of interest are approximated by waypoints
in 3D, produced in a pre-processing step (i.e., during the
waypoint generation step). The generated trajectory of this
stage will guide the UAV to fly over the objects of interest by
visiting their waypoint approximation, gathering information
about the mission such as the dimensions of the objects of
interest and the location of the obstacles in the environment.
Essentially, the generated UAV trajectory of this phase is
used to build a 3D map of the environment [24]–[27], which
in turn is utilized to reconstruct the objects of interest J and
obstacles Ξ in the environment as rectangular cuboids for
the Search Planning stage.

In the second stage, termed Search Planning, all objects of
interest and obstacles are represented as rectangular cuboids
based on the information acquired in the first stage. In this
stage, the planning takes place over a smaller area of the
surveillance region and produces accurate and fine-tuned
plans which take into account the agent dynamics, the envi-
ronmental constraints (i.e., obstacles), and the agent sensing
model (i.e., the specifications of the UAV onboard camera
system) and allows the agent to search in 3D all objects
of interest while avoiding collisions with the obstacles in
the environment. In essence, during this stage we find the
optimal UAV control inputs which allow the UAV to search
an object of interest across all faces.

IV. SYSTEM MODEL

A. Agent Dynamical Model
In this work we assume that the UAV agent evolves in

3D space according to the following discrete-time dynamical
model:

xt = Φxt−1 + Γut−1 (1)

where xt = [x, ẋ]⊤t ∈ R6 denotes the agent’s state at
time t which consists of position xt = [px, py, pz]t ∈
R3 and velocity ẋt = [νx, νy, νz]t ∈ R3 components in
3D cartesian coordinates. The agent can be controlled by
applying an amount of force u ∈ R3 in each dimension,
thus ut = [fx, fy, fz]

⊤
t denotes the applied force vector at t.

The matrices Φ and Γ are given by:

Φ =


I3 ∆T · I3
03 φ · I3


, Γ =


03

γ · I3


(2)

where ∆T is the sampling interval, I3 is the identity matrix of
dimension 3×3 and 03 is the zero matrix of dimension 3×3.
The parameters φ and γ are further given by φ = (1−η) and
γ = m−1∆T , where η is used to model the air resistance
and m is the agent mass.

B. Agent Sensing Model
The agent is equipped with an onboard camera taking

snapshots of the objects of interest in order to search for
survivors or people in need. Without loss of generality, we
assume in this work that the camera field of view (FoV)
angles in the horizontal and vertical axis are equal [28] and
thus the projected FoV footprint on a planar surface is square
with side length r and given by:

r(d) = 2d tan
ϕ
2


(3)

where d denotes the distance in meters between the location
of agent and the surface of the object that needs to be
searched and ϕ is the angle opening of the FoV according to
the camera specifications. Thus the area of the FoV footprint
at a distance d is r(d)2 meters. Before taking a snapshot of
the object of interest the agent first aligns its camera with
respect to the surface in such a way so that the optical axis
of the camera (i.e., the viewing direction) is parallel to the
normal vector (α) of the surface, as illustrated in Fig. 3.

In order to search an object of interest the agent needs to
take multiple snapshots (according to the size of the FoV as
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Fig. 3. The figure illustrates the agent sensing model i.e., a square region
with dimensions r× r. The angle ϕ determines the FoV opening and α is
the normal vector to the face of the object.

given by Eqn. (3)) such that the surface area of each face of
the object is completely included in the acquired images.

C. Object Representation

The objects of interest that need to be searched in 3D
and the obstacles inside the surveillance area that need to be
avoided are represented in this work as rectangular cuboids of
various sizes (referred to as cuboids hereafter). A rectangular
cuboid is a convex hexahedron in three dimensional space
which exhibits six rectangular faces (i.e., where each pair
of adjacent faces meets in a right angle). A point x =
[x, y, z]⊤ ∈ R3 that belongs to the cuboid C or resides
inside the cuboid satisfies the following system of linear
inequalities:

a11x+ a12y + a13z ≤ b1

a21x+ a22y + a23z ≤ b2
...

an1x+ an2y + an3z ≤ bn

where n = 6 is the total number of faces which compose
the cuboid C, αi = [ai1, ai2, ai3] is the outward normal
vector to the ith face of the cuboid and bi is a constant. In
more compact form the expression above can be written as
Ax ≤ B where A is a n×3 matrix, x is a 3×1 column vector
and B is a n×1 column vector. For the rest of the paper, we
will denote a rectangular cuboid C by the matrices A and B.
That said, in this work we assume that the surveillance region
has been 3D mapped [24], [25] during the assessment phase
and subsequently the objects of interest and obstacles in the
environment have been represented as cuboids, as discussed
above. Moreover, we should note here that the proposed
technique can be applied to any type of object as long as
it can be represented as a convex polyhedron.

V. ASSESSMENT PLANNING

In the assessment planning phase the objective is to
compute the UAV control inputs which guide the agent to
fly over the objects of interest with the ultimate purpose
of collecting critical information regarding the mission. We
assume that this information includes the dimensions of the
objects of interest and obstacles and the faces of the objects
of interest that need to be searched. This information is
passed to the second stage which is responsible for guiding

the UAV agent to search the objects of interest in 3D while
avoiding collisions with obstacles in the environment.

In this stage, the objects of interest are approximated by
single 3D waypoints and by taking into account the agent
dynamics a high-level plan is generated which minimizes the
proximity of the agent with the waypoints. Thus the waypoint
generation pre-processing step is applied first in which each
object of interest j ∈ J is approximated by a single location
in 3D space (i.e., the waypoint wj) and a mixed integer linear
program (P1) is derived below to compute the plan which
guides the UAV as close as possible to the waypoints.

Problem Assessment Planning :

(P1) min
u0:T−1

T

t=1

|J|

j=1

ζt,j (4a)

subject to t ∈ {1, . . . , T}:

xt = Φtx0 +

t−1

τ=0

ΦτΓut−τ−1 (4b)

xw+
t,j − xw−

t,j = d(Hxt, wj) ∀t, j (4c)
T

t=1

bt,j = 1 ∀j (4d)

ζt,j ≤ Mbt,j ∀t, j (4e)
ζt,j ≤ xw+

t,j + xw−
t,j ∀t, j (4f)

ζt,j ≥ xw+
t,j + xw−

t,j −M(1− bt,j) ∀t, j (4g)

{xw+
t,j , xw

−
t,j , ζt,j} ≥ 0 ∀t, j (4h)

bt,j ∈ {0, 1} ∀t, j (4i)

The program in (P1) finds the optimal control inputs u0:T−1

over the planning horizon T which minimizes the L1-norm
between the computed UAV 3D trajectory and the waypoints
according to the agent dynamics defined in Eqn. (4b). First,
we linearize the L1-norm between the position of the agent
Hxt at a specific time instance and the position of waypoint
wj of object j i.e., |Hxt −wj |, where H is a matrix which
extracts the position coordinates from the agent state xt.

To do that we define d(Hxt, wj) = Hxt − wj , which
according to the constraint in Eqn. (4c), is assigned to the
variable xw+

t,j if it is positive and to the variable xw−
t,j if it

is negative. Because, xw+
t,j and xw−

t,j are tied to the decision
variable ζt,j which is minimized and since xw+

t,j , xw−
tj and

ζt,j are all defined to take positive values (i.e., Eqn. (4h)),
the optimizer assigns the value of |Hxt −wj | to ζt,j via the
constraints in Eqn. (4e) - Eqn. (4g) when the binary variable
bt,j is activated.

More specifically, the binary variable bt,j indicates the
time instance that waypoint wj is visited by the agent. Thus
the decision variable ζt,j is assigned with distance values
at the time-steps which specific waypoints are visited. The
constraint in Eqn. (4c) computes the L1-norm between the
UAV trajectory and the waypoints for all possible UAV
positions in the planning horizon. The constraint in Eqn. (4d)
ensures that the number of binary variables that are activated
are equal to the total number of waypoints i.e., each waypoint
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Fig. 4. The figure illustrates the cuboid-generation pre-processing step
which allows the agent to search all faces of an object of interest by passing
through the generated cuboids.

is visited exactly once during the planning horizon. Finally,
the set of constraints (4e)-(4g) assign the distance between
waypoint j and the UAV position Hxt at time t to ζt,j , if
bt,j = 1. Observe, that when bt,j = 0 the value of ζt,j is
driven to zero. Thus, the minimization of Eqn. (4a) forces the
UAV agent to approach as close as possible to the waypoints,
one waypoint at a time, while enforcing the constraint of its
dynamical model.

The produced 3D trajectory guides the agent to pass
from all waypoints thus acquiring information regarding the
objects of interest i.e., their dimensions and other critical in-
formation about the mission such as the location of obstacles
which are used in stage two below.

VI. SEARCH PLANNING

In the second phase, termed Search Planning, the frame-
work can be used to compute fine-tuned and collision-free
search plans inside a smaller area of the surveillance region.
In particular in this stage the generated search plans allow the
agent to search the objects of interest in 3D (i.e., for each
object of interest all their faces are searched for survivors
according to the camera specifications). We assume that
the information collected during the first stage allows us to
represent each object of interest j that needs to be searched
and the obstacles in the environment as rectangular cuboids
i.e., Sec. IV-C. Thus for this phase we assume that the UAV
has obtained a map of the environment which contains the
locations of the objects of interest as well as the locations of
the obstacles in the environment. In this map all objects of
interest and obstacles have been represented as rectangular
cuboids of appropriate dimensions.

Before discussing the details of the proposed search plan-
ning technique we first describe the pre-processing step (i.e.,
the cuboid generation step) which takes place before the main
trajectory planning process.

A. Cuboid Generation

The main idea here is to generate artificial cuboids all
around the object of interest and then guide the UAV agent
through these cuboids in order to search the object in
3D from all faces, i.e., scan the total surface area of the
object with the UAV’s camera system. The generated cuboids
are placed at specific distances from the object of interest
according to the specifications of the UAV camera system
Eqn. (3). More specifically, we assume that we know a-
priori the distance d that the UAV must maintain with a

particular object of interest during searching. Given d and
the camera FoV angle ϕ, the size of the UAV FoV footprint
can be determined by Eqn. (3) as a square with length r.
Subsequently, the area of each face of the object of interest
that needs to be searched is decomposed into several r × r
cells and for each of those cells a cuboid is generated at
distance d, so that when the agent passes from within a
cuboid the corresponding area of the face is searched. That
said, in the cuboid generation preprocessing step, for each
face fi, i ∈ [1, . . . , 6] of the object of interest j we generate
artificial cuboids Cj

i,n, n ∈ [1, . . . , N j
i ] at distance d where

N j
i is the total number of cuboids that are necessary to cover

the whole area of face fi of object of interest j.
This is illustrated in Fig. 4, where 4 faces of the object

of interest need to be searched and thus each of the 4
faces has been decomposed into several cells marked with
light blue color. For each cell a cuboid shown in black
color is generated to allow the agent to pass through it
and search the corresponding part (area) of the face. More
specifically, in Fig. 4, the object of interest (with brown
color) is represented by a rectangular cuboid with dimen-
sions width=60m, length=60m and height=60m. We assume
that this information was acquired during the Assessment
planning phase. The UAV agent must maintain a distance
of d = 27m from each of the object’s faces, and the FoV
angle is ϕ = 60deg. The camera FoV area in this case is
approximately 30× 30 m2 according to Eqn. (3). That said,
each of the objects’s faces is decomposed into cells of size
30×30 m2 creating a grid of 4 cells. This is depicted in Fig.
4 with the light blue 3D boxes in front of each face. Then
for each cell a cuboid is generated at distance d from the
object, shown in black color in Fig. 4. When the agent resides
within a cuboid their FoV projection captures an area of size
30× 30 m2 on the face of the object. By guiding the agent
through all 4 cuboids we allow the agent to cover the total
surface area of a face with its camera system. Consequently,
we are interested in guiding the agent via all the generated
cuboids in order to search the object of interest across all
faces.

B. 3D Search Planning
Once the cuboid generation pre-processing step is com-

pleted, we formulate the problem of searching the object of
interest in 3D, as a rolling-horizon model predictive con-
trol (MPC) problem with linear and binary constraints and
we solve it using off-the-shelf mixed-integer programming
(MIP) solvers. Specifically, in the proposed approach at each
sampling time t the UAV control actions ut|t, . . . , ut+T−1|t
are obtained over a rolling-horizon of length T time-steps by
solving a finite horizon open-loop optimal control problem
using the current state of the UAV xt|t as the initial state.
The first control action ut|t in the sequence is then applied
to the UAV and the optimization is repeated for the next
sampling time. In this problem we consider 2 different types
of constraints: a) linear constraints which govern the UAV
dynamical model and b) binary constraints for the search
task, obstacle avoidance and duplication of effort. Let us
assume, that the cuboid generation pre-processing step has
created a total of N cuboids Cn, n ∈ [1, . . . , N ] (across all
faces) around a single object of interest j. For notational



clarity we assume that for every face i of the object of interest
we generate the same number of cuboids and we drop the
index j of the object of interest, thus Cj

i,n becomes Cn for a
single object of interest.

We associate each cuboid Cn that needs to be visited with
a binary variable yn which indicates whether this cuboid has
been marked to be visited at some future time step (t+ τ +
1|t), τ ∈ {0, . . . , T − 1} i.e., yn = 1, iff Hxt+τ+1|t ∈ Cn.
Here H is a matrix which extracts the position coordinates
from the agent’s state. That said, the 3D search task objective
becomes the maximization of the cuboids to be visited over
the planning horizon i.e.,

max


n

yn (5)

For infinite planning horizon problems Eqn. (5) can be
used to devise a search plan that will visit all the unvisited
cuboids. However, to apply Eqn. (5) in a rolling finite horizon
fashion we need to keep track of the visited cuboids in order
to avoid visiting the same cuboids over and over. To achieve
this, the UAV agent maintains a map V which is used to
keep track of all visited cuboids as shown below:

V (n) =


1 , if Hx0:t ∈ Cn
0 , o.w

(6)

where Hx0:t denotes the agent’s locations up to time t.
That said, the complete mathematical formulation of the 3D
search planning problem tackled in this work is shown in
(P2) below:

1) Mission Objective: In (P2) we are interested in finding
the optimal UAV control actions ut|t, . . . , ut+T−1|t over
the rolling horizon of length T that minimizes the mission
objective h(x,u,y) shown in Eqn. (7). The mission objective
is a function of the agent’s future state x, control inputs u and
the binary variables y which indicate whether a cuboid has
been planned to be visited in the future. More specifically,
the mission objective is given by:

h(x,u,y) = aHxt+τ+1|t − x22 + (7)

b

T−1

τ=1

ut+τ |t − ut+τ−1|t22 − c

N

n=1

yn

where τ ∈ {0, . . . , T − 1}, x is the centroid of the
nearest (with respect to the agent’s current location) un-
visited cuboid and (a, b, c) are weights associated with the
different mission objectives. In particular, the first term i.e.,
Hxt+τ+1|t − x22 guides the UAV agent towards the
nearest unvisited cuboid by minimizing the squared euclidian
distance of the future agent location Hxt+τ+1|t with the
centroid of the nearest unvisited cuboid x. Moreover, the
second term i.e.,

T−1
τ=0 ut+τ+1|t − ut+τ |t22 is used to

minimize the deviations between consecutive control inputs,
thus leading to smoother UAV trajectories. Finally, the last
term in Eqn. (7) is used for maximizing the number of
cuboids to be visited over the planning horizon, as discussed
previously.

2) Mission Constraints: We can now describe the mission
constraints which lead to the desired 3D search planning
behavior. The constraints in Eqn. (8b) - (8c) are due to
the agent dynamical model as described in Section IV,
assuming a known initial state x1|1 = x0. As we have already
mentioned, the cuboid generation pre-processing step has
created a total of N cuboids Ci, i ∈ [1, . . . , N ] for the object
of interest j.

The constraints in Eqn. (8d)-(8g) are due to the 3D search
task. Specifically, the constraint in (8d) uses τ×N×L binary
variables bτ,n,l, for τ ∈ {0, . . . , T − 1}, n ∈ {1, . . . , N}
and l ∈ {1, . . . , L} to determine whether the agent position
Hxt+τ+1|t resides inside the negative or positive half-space
defined by the plane which contains the lth face of the nth
cuboid. The matrix An of size (L× 3) and the vector Bn of
size (L×1) represent the linear system of inequalities Anx ≤
Bn for which a 3D point x must satisfy in order to reside
inside the cuboid Cn i.e., Sec. IV-C. Thus, the inequality
An,lHxt+τ+1|t ≤ Bn,l becomes true when the UAV location
resides inside the negative half-space created by the plane
containing the lth face of the nth cuboid. When this happens
the corresponding binary variable bτ,n,l becomes 1 to satisfy
the constraint. Otherwise bτ,n,l = 0 and the constraint in Eqn.
(8d) is valid with the addition of a large positive constant
(i.e., big-M) M as shown.

Problem Search Planning :

(P2) min
ut|t,...,ut+T−1|t

h(x,u,y) (8a)

subject to τ ∈ {0, . . . , T − 1}:
xt+τ+1|t = Φxt+τ |t + Γut+τ |t ∀τ (8b)
xt|t = xt|t−1 (8c)
An,lHxt+τ+1|t + (M −Bn,l)bτ,n,l ≤ M ∀τ, n, l (8d)

Lb̃τ,n −
L

l=1

bτ,n,l ≤ 0 ∀τ, n (8e)

b̂n ≤


τ

b̃τ,n ∀n (8f)

yn ≤ b̂n + V (n) ∀τ, n (8g)
Aψ,lHxt+τ+1|t > Bψ,l −Mzτ,ψ,l ∀τ,ψ, l (8h)
L

l=1

zτ,ψ,l ≤ L− 1 ∀τ,ψ (8i)

bτ,n,l, b̃τ,n, b̂n, yn, zτ,ψ,l ∈ {0, 1} ∀τ, n,ψ, l (8j)
|ẋt+τ+1|t| ≤ vmax ∀τ (8k)
|ut+τ+1|t| ≤ umax ∀τ (8l)

Subsequently, the binary variable b̃τ,n in Eqn. (8e) is
activated when the system of linear inequalities is satisfied
i.e., An,lHxt+τ+1|t ≤ Bn,l, ∀l which indicates that the
agent location Hxt+τ+1|t resides inside the cuboid n at time
t + τ + 1. The constraint in Eqn. (8f) makes sure that the
agent is not rewarded by planning trajectories which visit the
same cuboid more than once in the future.

Finally, the constraint in Eqn. (8g) makes sure that the
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Fig. 5. An illustrative example of the Assessment Planning phase

agent is not rewarded for visiting cuboids that have been
visited in the past.

Lastly, the constraints (8h) - (8i) are the collision avoid-
ance constraints with the object of interest and with obstacles
in the environment. The UAV agent avoids a collision with
an object when:

Hxt+τ+1|t /∈ Cψ, ∀ψ ∈ Ψ, τ ∈ {0, . . . , T − 1} (9)

where Cψ denotes the obstacle ψ ∈ Ψ to be avoided which
is represented as a convex polyhedron e.g., a rectangular
cuboid. Suppose that all objects ψ to be avoided contain
L faces, then a collision is avoided at time τ with object ψ
if ∃l ∈ {1, . . . , L} : Aψ,lHxt+τ+1|t > Bψ,l.

The constraint in Eqn. (8h) uses T × |Ψ| × L binary
variables zt,ψ,l to check if the constraint Aψ,lHxt+τ+1|t >
Bψ,l is violated where M is a big positive constant. Then,
constraint (8i) counts the number of times zt,ψ,l is activated
and makes sure that this number is less or equal than L− 1.
Equivalently, agent controls are chosen so that the linear
system of inequalities AψHxt+τ+1|t < Bψ is not satisfied.
The constraint in Eqn. (8j) declares the binary variables of
the problem and finally the constraints in Eqn. (8k) and Eqn.
(8l) define the agent’s maximum speed and maximum control
input respectively.

Finally, we should mention that the above search planning
formulation can be easily extended for multiple objects of
interest. This can be achieved by expanding the binary vari-
ables by one dimension in order to distinguish the cuboids
of different objects of interest. For instance for objects of
interest j ∈ J the binary variable bτ,n,l in Eqn. (8d) becomes
bjτ,n,l, the binary variable b̃τ,n in Eqn. (8e) becomes b̃jτ,n and
so forth.

VII. EVALUATION

A. Experimental Setup

To evaluate the performance of the proposed two-stage
search planning approach we have conducted several syn-
thetic experiments and simulations with varying number of
waypoints, obstacles and objects of interest. In each test
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Fig. 6. The figure illustrates how the number of waypoints affects the
performance of the proposed technique.

we evaluate the proposed approach either qualitatively or
quantitatively and we discuss its strengths and weaknesses.
The experimental evaluation is divided into two parts. First,
we investigate the performance of the Assessment Planning
phase as discussed in Sec. V and then we conduct the
experimental evaluation of the Search Planning phase i.e.,
Sec. VI.

The experimental setup used for the evaluation of the
proposed system is as follows: The agent dynamics are
expressed by Eqn. (1) with ∆T = 1s, agent mass m =
3.35kg and η = 0.2. The maximum applied control input
umax is 20N or (kg.m/s2), the maximum agent velocity vmax is
15m/s and the agent acceleration can reach 6m/s2. Moreover,
we assume that the agent FoV angle φ is 60deg.

B. Results
1) Assessment Planning: We begin our evaluation with

a 3D simulated scenario for the assessment planning phase.
In this scenario we deploy 7 objects of interest of various
sizes throughout the surveillance area of dimension 600m
× 300m × 70m. The objects of interest are approximated
in this step as 3D waypoints shown as green circles in
Fig. 5a. The planning horizon T is set to 55 time-steps
and the mixed-integer linear program in (P1) is applied to
obtain the results shown in Fig. 5. The objective here is
to devise a plan that will guide the UAV agent to visit all
waypoints within the specified time horizon while satisfying
the agent dynamical constraints. The agent start position is
marked with a green asterisk and the agent final position is
marked with a red asterisk as shown in the figure. Figure.
5a shows the generated UAV trajectory that visits all the
specified waypoints. Figure 5b shows the L1-distance of
the planned trajectory with each of the 7 waypoints and
finally Fig. 5c and Fig. 5d show in more detail the (x, y, z)
coordinates of obtained trajectory and the applied control
inputs respectively.

The next experiment aims to investigate how the number of
waypoints affect the performance of the proposed assessment
planning technique. For this experiment we have conducted
20 Monte Carlo trials where we uniformly generate random
waypoints inside a surveillance area of dimensions 200m
× 200m × 50m and will let our system to run with a
fixed time-horizon of 50 time-steps, measuring the runtime,
the number of explored nodes during the MIP branch-and-
bound optimization and the value of the objective function
at the end of the optimization. Figure 6a shows the average
runtime and the average number of explored nodes as a
function of the number of waypoints. As we can observe
the average runtime increases as the number of waypoints
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Fig. 7. Simulated scenario demonstrating the Search planning phase for one object of interest as discussed in Sec. VI.

increases. Additionally, we can observe that the complexity
of the problem increases with the number of waypoints. This
is also shown by the number of nodes that have been explored
until a solution is found. As the number of binary variables
increases in a mixed-integer program the produced search
tree that is needed to be explored during the branch-and-
bound optimization procedure also increases in size and as a
result more nodes are needed to be explored until a solution
is found. Finally, Fig. 6b shows the value of the objective
function at the end of the optimization. Essentially, we would
like to drive this value close to zero, as we would like to
bring the generated search plan as close as possible to the
waypoints. However, this is not always possible especially
as the number of waypoints increases. This is attributed to
the overall complexity of the problem i.e., agent dynamics,
the placement of the waypoints, the length of time horizon,
etc.

2) Search Planning: The next set of experiments aims to
demonstrate the performance of the proposed search planning
technique as discussed in Sec. VI. The objective here is to
produce fine-tuned and accurate search plans which search
the object of interest in 3D across all faces while avoiding
collisions with the surrounding obstacles.

The first experiment aims to demonstrate the 3D search
task for an object of interest which is represented by a
cuboid with size 60m × 60m × 60m. In this experiment,
the agent is tasked to conduct search planning around the
object (i.e., covering four of its faces) at a distance of no
less than d =27m from the object of interest. At this distance
the camera FoV footprint has size 30m × 30m and thus for
each of the object’s faces 4 cuboids are generated to capture
the total surface area of the face. In total 16 cuboids are
generated around the object of interest as illustrated in Fig.
7(a). The agent’s initial state is X0 = [60, 230, 10, 0, 0, 0]⊤,
indicated by the green square in Fig. 7(a), and the weights
of the objective function in Eqn. (7) are set to (a, b, c) =
(0.3, 0.001, 1.5). The planning horizon for this experiment
is set to 10 time-steps.

In Fig. 7(a), the object of interest to be searched is colored
orange and the generated cuboids that need to be visited by
the agent are marked in black. Finally, the executed UAV
trajectory is marked with green diamonds and the future
UAV trajectory over the planning horizon is marked with
red circles.

As shown, in Fig. 7 the agent passes from all 16 cuboids
and thus manages to search all 4 faces of this object. More
specifically, Fig. 7(b) - Fig. 7(h) show the agent executed and
planned trajectory at time-steps 1, 6, 13, 38, 50, 57 and 63
respectively. As we can observe in each planning horizon the
agent tries to maximize the number of cuboids that are visited
while at the same time minimizes its distance to the nearest
unvisited cuboid according to the mission objective in Eqn.
(7). For this scenario, the search planning problem in (P2)
requires 10×16×6 binary variables for bτ,n,l, 10×16 binary
variables for b̃τ,n, 16 binary variables for b̂n and finally 16
binary variables for yn. Thus, in total we need 1152 binary
variables to model the functionality of this problem in an
obstacle free environment.

In particular, the main factor that drives the computational
complexity is the number of binary variables which are
required by (P2). As the number of binary variables increases
the search-space that is needed to be explored during the
optimization process increases in size and as a result more
nodes are needed to be explored until a feasible solution is
found. For a problem with |J | objects of interest, N cuboids
per object of interest, |Ψ| obstacles and planning horizon of
length T , the number of binary variables needed by (P2) is
equal to 2N |J | + T [N |J |(L+ 1) + |Ψ|L] (assuming each
polyhedron in the environment has L faces) which drives
the main computational complexity.

Finally, Fig. 8 shows the proposed 3D search planning
approach for multiple objects of interest in the presence of
obstacles. In this scenario, two objects of interest of size 60m
× 60m × 60m each are placed inside the surveillance area.
The UAV agent is instructed to search the first object from a
distance of d1 = 53m and the second object from a distance



Start

(a) (b)

Stop

Fig. 8. Search Planning for multiple objects of interest in the presence of
obstacles.

of d2 = 27m. This results in FoV sizes of 60m × 60m and
30m × 30m for d1 and d2 respectively. Additionally, the two
objects of interest are separated by an obstacle of dimensions
30m × 380m × 63m as shown in Fig. 8. The UAV initial
state is X0 = [460, 140, 10, 0, 0, 0]⊤, the planning horizon
T is 12 time-steps and and the weights of the objective
function in Eqn. (7) are set to (a, b, c) = (0.3, 0.001, 0.001).
According to the agent FoV size for this scenario each face
of the first object was decomposed into one cell (illustrated
by the light blue 3d boxes) whereas each face of the second
object was decomposed into 4 cells. The cuboid generation
pre-processing step generates 4 cuboids (1 cuboid per face)
for the first object and 16 cuboids (4 cuboids per face) for
the second object. As we can observe, the proposed approach
guides the UAV agent to search both objects starting from
the first object of interest and moving to the second while
avoiding the obstacle in its path. The final agent location is
shown in Fig. 8(b) with a red diamond. Finally we should
mention that, in the examples above we have shown the
search planning task on the lateral faces of the objects of
interest. This is done purely for presentation purposes and
for visual clarity. The orientation of the face in 3D space
is irrelevant in the proposed approach i.e., a face on the
horizontal plane (e.g., the face on the top of the object of
interest) can be handled the same way.

VIII. CONCLUSION

In this work we have proposed a novel approach, for in-
tegrating and automating the first two phases of a traditional
search and rescue mission, with an autonomous UAV agent.
In the first stage, namely assessment planning a high-level
plan is produced which allows the UAV to fly over the area
of interest and gather mission critical information. Then in
the second stage i.e., search planning, the generated plan
is further fine-tuned to allow the UAV agent to search the
objects of interest in 3D (i.e., across all faces) while avoiding
collisions with the obstacles in its path. The performance
of the proposed approach has been demonstrated through
extensive simulation analysis. Future work, will investigate
the real-world implementation of the proposed system, and
its integration into our existing multi-drone tasking platform.
Additional future directions include the extension of this
work to multiple UAV agents, and the investigation of search
planning techniques in noisy and uncertain environments.
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