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Abstract— Nowadays, unmanned aerial vehicles or UAVs are
being used for a wide range of tasks, including infrastructure
inspection, automated monitoring and coverage. This paper
investigates the problem of 3D inspection planning with an
autonomous UAV agent which is subject to dynamical and
sensing constraints. We propose a receding horizon 3D in-
spection planning control approach for generating optimal
trajectories which enable an autonomous UAV agent to inspect
a finite number of feature-points scattered on the surface of
a cuboid-like structure of interest. The inspection planning
problem is formulated as a constrained open-loop optimal
control problem and is solved using mixed integer programming
(MIP) optimization. Quantitative and qualitative evaluation
demonstrates the effectiveness of the proposed approach.

I. INTRODUCTION

Recent technological and scientific advancements in
aerospace, avionics and artificial intelligence, in conjunction
with the cost reduction of electronic parts and equipment,
have made increasingly popular the use of unmanned aerial
vehicles (UAVs) in various application domains. UAVs have
found widespread utilization in various tasks including emer-
gency response and search-and-rescue missions [1]–[5], pre-
cision agriculture [6], [7], wildlife monitoring [8], [9], and
security [10], [11].

One of the most important functionalities that will further
enable the utilization of fully autonomous UAVs in the
application domains discussed above is that of trajectory
planning [12], also known in the literature as motion/path
planning [13]. This technology is of crucial importance
in designing and executing automated UAV-based flight
missions (i.e., automated UAV guidance, navigation and
control), according to the requirements of the task at hand. In
trajectory planning we are interested in delivering a collision-
free motion between an initial and a final location within
a given environment. Moreover, for many tasks including
UAV-based automated maintenance operations, target search
and infrastructure inspection, there is the need for finding
the optimal trajectory which allows an autonomous UAV to
utilize its sensors in order to cover or inspect every point
within a given area or structure of interest. This problem
is known in the literature as inspection planning (IP) or
coverage path planning (CPP) [14], and is the focus of this
work. More specifically, during an automated inspection mis-
sion the UAV agent must autonomously plan its inspection
trajectory which allows the efficient coverage/inspection of
all points of interest on a given structure, while satisfying
the vehicle’s dynamic and sensing constraints.
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Although a plethora of inspection planning approaches
have been proposed in the literature, the technology has not
yet reached the required level of maturity to fully support
autonomous UAV operations. Towards this direction, in this
paper we investigate the UAV-based inspection planning
problem in 3D environments for cuboid-like structures (or
objects) of interest, such as buildings, that need to be fully
inspected. More specifically, we assume that a finite number
of feature-points are scattered throughout the surface area
of the structure of interest and must be inspected by an
autonomous UAV agent. The UAV agent evolves in 3D
space according to its dynamical model and is equipped with
a camera sensor which exhibits a dynamic sensing range
i.e., the size of the camera’s projected field-of-view (FOV)
on a given surface is a function of the distance between
the UAV and that surface. Based on these assumptions,
we propose a receding horizon mixed integer programming
(MIP) inspection planning controller, for optimally determin-
ing the UAV’s motion control inputs within a finite rolling
planning horizon, subject to the UAV’s sensing capabilities.
The UAV’s inspection trajectory is generated on-line by
solving at each time-step a constrained open-loop optimal
control problem until all feature-points are inspected (i.e.,
all feature-points are viewed through the UAV’s camera).
Specifically, the contributions of this work are the following:
• We propose a receding horizon inspection planning

control approach which allows an autonomous UAV
agent, governed by dynamical and sensing constraints,
to inspect in 3D environments cuboid-like structures of
interest (e.g., buildings).

• The inspection planning problem is formulated as a
constrained optimal control problem and solved over
a finite rolling planning horizon using mixed integer
programming (MIP) optimization, allowing the on-line
generation of the UAV’s optimal inspection trajectory.

• Qualitative and quantitative evaluation demonstrates the
performance of the proposed approach.

The rest of the paper is organized as follows. Section II
summarizes the related work on inspection planning with
ground and aerial vehicles. Section III discusses our as-
sumptions and develops the system model, and Section IV
formulates the problem tackled in this work. Then, Section
V discusses the details of the proposed inspection planning
control approach and Section VI evaluates the proposed
approach. Finally, Section VII concludes the paper and
discusses future work.

II. RELATED WORK

Several approaches and algorithms can be found in the
literature for the problem of autonomous inspection/coverage
planning with single and multiple robots. In this section



we give a brief overview of the most relevant techniques.
A detailed survey regarding the various inspection/coverage
planning techniques in the literature can be found in [14],
[15]. Most notably, the problem of inspection/coverage plan-
ning with ground robots was investigated in [16] and [17].
Specifically, the authors in [16], propose a boustrophedon
cellular decomposition coverage algorithm, in which the free-
space of a 2D planar environment is a) first decomposed into
non-intersecting regions or cells and b) the cells are then
visited by the robot sequentially and covered with simple
back-and-forth motions. The work in [17] proposes a two-
stage approach for inspecting polygonal objects, with the
main objective being the computation of a path such that each
point on the object’s boundary is observed by the robot. The
algorithm in [17] first finds a set of sensing locations which
allow full inspection of the polygonal object. In the second
stage, the sensing locations found during the previous stage,
are connected with the shortest path to generate the robot’s
inspection path. Several other works [18], [19] have also
proposed the decomposition of the free space into several
non-overlapping regions, which can be individually covered
and inspected with sweeping motions. Extensions [20], [21]
of these approaches have investigated the optimal region
traversal order and the optimal sweeping direction.

The problem of 2D coverage planning was also investi-
gated in the context of camera networks [22], [23], with
the main objective being the optimal control and placement
of cameras for full visual coverage of the monitoring space.
The majority of the related work discussed so far, transforms
the inspection/coverage planning problem to a path planning
problem by firstly decomposing the area/object of interest
into a number of non-overlapping cells which are then
connected together with a path-finding algorithm to form
the robot’s path. Moreover, these approaches have mainly
been tested in 2D environments and they do not consider
the robot’s dynamic and sensing behavior, i.e., they do not
find the robot’s control inputs which generate the inspection
trajectory.

More related to the proposed approach is the work in [24]
which proposes a coverage control approach for guiding a
mobile robot to completely cover a bounded two-dimensional
region. In [24] the 2D bounded surveillance environment is
first covered with a minimum number of disks which exhibit
a radius equal to the robots sensing range and then a neural
network is used to plan the robot’s coverage path. At a second
stage, the generated path is adapted to the robot’s kinematic
constraints. Moreover, in [25], an energy optimized graph-
based planner is proposed for UAV-based coverage in 2D
discrete environments. Similarly, in [26] a UAV-based terrain
coverage approach is proposed for computing a trajectory
through a known environment with obstacles that ensures
coverage of the terrain while minimizing path repetition. In
[27] the terrain coverage problem with a UAV is investigated
more realistically with the inclusion of photogrammetric
constraints. The approach in [28] tackle the terrain-coverage
problem for rectilinear polygonal environments with multiple
UAV agents. In this case, the environment is partitioned
into multiple sub-regions, which are assigned to the UAVs
according to their coverage capabilities.

An off-line sampling-based 3D coverage planning ap-

proach for an underwater inspection robot is proposed in
[29]. Specifically, the authors propose a redundant roadmap
algorithm and a watchman route algorithm [30], to allow the
construction of a discrete set of stationary robot views which
allow full coverage of the object of interest. The generated
view configurations are then connected by solving an in-
stance of the traveling salesman problem (TSP), although the
generated path might be infeasible for robots with dynamical
constraints.

Finally, inspection planning approaches based on the next
best view (NBV)/view-planning techniques [31]–[33] are
concerned with the computation of sequence of viewpoints
which results in complete scene coverage. These methods are
usually applied in unknown environments and often provide
only suboptimal results since they must solve instances
of the set cover problem [34] and the traveling salesman
problem (TSP) [35]. Moreover, these approaches focus on the
selection of discrete sensor views rather than the construction
of a continuous trajectory, which also accounts for the robots
dynamical and/or sensing constraints.

III. PRELIMINARIES

A. Agent Dynamical Model

In this work an autonomous UAV agent maneuvers inside
a bounded surveillance region W ⊂ R3, with dynamics
governed according to the following discrete-time dynamical
model:

xt+1 = Axt +But (1)

where xt = [pt, νt] ∈ R6,1 is the state of the agent at time-
step t, which consists of position pt ∈ R3,1 and velocity νt ∈
R3,1 components in 3D cartesian coordinates. The vector
ut ∈ R3,1 denotes the input control force applied in each
dimension, which allows the agent to change its direction
and speed. The matrices A and B are given by:

A =
[I3×3 δt I3×3
03×3 α I3×3

]
, B =

[ 03×3
β I3×3

]
(2)

where δt is the sampling interval, I3×3 and 03×3 are the iden-
tity matrix and zero matrix respectively, both of dimension
3× 3, and the parameters α and β are given by α = (1− η)
and β = δt

m . Moreover, the parameter η is used to model the
air resistance and m denotes the agent’s mass.

B. Agent Camera Model

The UAV agent is equipped with an onboard forward
facing camera which is used for inspecting cuboid-like
structures. Without loss of generality, we assume that the
camera’s horizontal and vertical field-of-view (FOV) angles
are equal, and thus the projection of the camera’s FOV (F)
on a planar surface has a square footprint with side length
`. This is depicted in Fig. 1(a), where the camera view is
represented by a regular square pyramid whose apex (i.e., the
center of the camera located at the lens) is directly above the
centroid of its square base, and whose sides are 4 triangular
faces meeting at the apex. We assume that the size of the
projected FOV footprint is a linear function of the distance
between the agent and the object of interest and thus:

` = g(d) = z1d+ z0 (3)
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Fig. 1. The figure illustrates the UAV’s sensing model. (a) The UAV is
equipped with a camera that has a view which is represented by a regular
square pyramid whose apex (i.e., pt) is directly above the centroid of its
square base, and whose sides are 4 triangular faces meeting at the apex. F
denotes the camera’s projection, on the surface of the cuboid-like structure,
which is represented by a square with length `. (b) The size of the projected
FOV on a planar surface is a function of the distance d between the agent
position pt and the cuboid-like structure.

where d denotes the distance between the location of the
agent and the structure that needs to be inspected, and the
pair (z0, z1) are the model’s parameters. This is shown in
Fig. 1(b), where the size of projected square camera footprint
decreases as the agent approaches the structure (i.e., the
distance between the agent and the structure decreases and
so does the size of camera FOV). Moreover, in this work
it is assumed that the camera principal axis (depicted with
the red line from the camera center perpendicular to the
image plane in Fig. 1(a)) is always parallel with the outward
normal vector (φ) of the plane which contains the face that
is being viewed. In other words it is assumed that the agent
automatically adjusts the onboard camera so that the viewing
direction is parallel with the normal vector φ at all times.

C. Structure to be inspected
The 3D structure (or object) to be inspected by the UAV

agent is represented in this work by a rectangular cuboid C
of arbitrary size. A rectangular cuboid is convex polyhedron
which exhibits six faces fi, i = [1, .., 6], where opposite faces
are equal and parallel, and each pair of adjacent faces meets
in a right angle. The equation of the plane which contains
the ith face of the cuboid is given by:

φ>i · x = γi (4)

where φ>i · x denotes the dot product between φ>i and x,
φi ∈ R3,1 is the outward normal vector to the plane which
contains the ith face, γi ∈ R is a constant derived by the dot
product of φi with a known point on the plane, and x ∈ R3,1

is an arbitrary point in 3D space. Thus, all points x which
satisfy the equality in Eqn. (4) belong to the plane which
contains the ith face of the cuboid. Consequently, a point
x ∈ R3,1 resides inside the cuboid C when it satisfies all six
inequalities:

x ∈ C ⇐⇒ φ>i · x ≤ γi, ∀i = [1, .., 6] (5)

Equivalently, Eqn. (5) can be written more compactly in
matrix form as Φx ≤ Γ, where Φ is a matrix of dimensions
6×3, where the ith row corresponds to φi and Γ is a column
vector of dimensions 6×1, where the ith element corresponds
to γi.

The goal of the UAV agent is to inspect all faces of cuboid
C. More specifically, we consider the existence of a finite

x
y

z pt

ξi
j

fi
<latexit sha1_base64="3ETUMVBvK/z6shqA4Ot++2SR4hM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURUZdFQVxWsA9oY5hMJ+3QySTMTIQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZVWVtfWN8qbla3tnd2qvbffVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wvs79ziOVisXiXk8S6kV4KFjICNZG8u1qP8J6RDDPbqYPzNe+XXPqzgxombgFqUGBpm9/9QcxSSMqNOFYqZ7rJNrLsNSMcDqt9FNFE0zGeEh7hgocUeVls+BTdGyUAQpjaZ7QaKb+3shwpNQkCsxkHlMtern4n9dLdXjpZUwkqaaCzA+FKUc6RnkLaMAkJZpPDMFEMpMVkRGWmGjTVcWU4C5+eZm0T+vuef3s7qzWuCrqKMMhHMEJuHABDbiFJrSAQArP8Apv1pP1Yr1bH/PRklXsHMAfWJ8/CDWTWA==</latexit>

F i
t

Fig. 2. The UAV’s objective is to inspect all Ni feature-points ξij , j =
[1, .., Ni] scattered on face fi, i ∈ L, for all |L| faces which contain feature-
points. The feature-point ξij is inspected at time t if it resides within the
camera’s projected FOV i.e., ξij ∈ F it as illustrated in this figure.

number of feature-points scattered on the cuboid’s surface
that must be viewed through the agent’s camera in order for
C to be visually inspected by the UAV agent. Let ξij ∈ R3,1

to represent the jth feature-point on the ith face of the cuboid
C. We say that cuboid C has been visually inspected by the
UAV agent iff :

ξij ∈
⋃

t≤Tmax ∧ i∈L

F it , ∀j (6)

where Tmax denotes the total mission inspection time, F it
denotes the projected camera FOV on the ith face of the
cuboid at time-step t, and finally L denotes the set of cuboid
faces which contain feature-points that need to be inspected.
In this work we assume that the three-dimensional map of
the environment is readily available for the UAV agent to
use during its mission, which was obtained through a 3D
mapping procedure [36] executed prior to the inspection
mission. During this 3D mapping procedure, the structure to
be inspected has been reconstructed as a rectangular cuboid
C, and a fixed number of feature-points ξij ∈ R3,1 have been
identified and extracted from its 3D point cloud. The UAV
agent uses this 3D map to acquire the number of feature-
points along with their location in order to plan its inspection
mission.

IV. PROBLEM STATEMENT

Let an autonomous UAV agent with initial state xt at
time-step t, to evolve inside a bounded surveillance area
W ⊂ R3. Let a cuboid-like structure C ∈ W to contain a
number of feature-points ξij , i ∈ L, j = [1, .., Ni], where L
denotes set of cuboid faces which contain feature-points and
Ni denotes the total number of feature-points on the ith face
of the cuboid. The inspection planning problem tackled in
this work can be stated as follows: Given a sufficiently large
mission inspection time Tmax, find the optimal UAV control
inputs Ut = {ut|t, .., ut+T−1|t}, t ≤ Tmax, over a rolling
finite planning horizon of length T time-steps, such that all
feature-points on the cuboid’s surface are visually inspected
by the UAV agent at some point during the mission time i.e.,
ξij ∈

⋃
t≤Tmax ∧ i∈L F it ,∀j. In a high level form, the problem

tackled in this work can be formulated as shown in Problem
(P1).

In this work the notation xt′|t denotes the agent’s future
predicted state at time-step t′ which is computed at time-
step t. In essence we are looking to find the optimal future



Problem (P1): High-level Controller

arg min
Ut

JInspection, t ≤ Tmax (7a)

subject to: τ ∈ {0, . . . , T − 1}
xt+τ+1|t = Axt+τ |t +But+τ |t ∀τ (7b)
xt|t = xt|t−1 (7c)

ξij ∈
⋃

t≤Tmax ∧ i∈L

F it , ∀j = [1, .., Ni] (7d)

pt+τ+1|t /∈ C ∀τ (7e)
xt+τ+1|t ∈ X , ut+τ |t ∈ U ∀τ (7f)

UAV control inputs Ut = {ut|t, .., ut+T−1|t}, which optimize
the inspection objective function JInspection and which satisfy
a certain set of constraints i.e., Eqn. (7b) - Eqn. (7e).
The constraints in Eqn. (7b) and Eqn. (7c) are due to the
agent’s dynamical model as discussed in Sec. III-A, and the
constraint in Eqn. (7d) makes sure that all feature-points ξij
on the cuboid C will be viewed by the agent’s camera at
least once during the mission i.e., all feature-points must
be included inside the agent’s projected camera FOV. Then
the collision avoidance constraint in Eqn. (7e) makes sure
that the UAV agent avoids collisions with the cuboid under
inspection C at all times, and finally, the constraint in Eqn.
(7f) place the agent’s state and control inputs within the
desired operating bounds X and U respectively.

V. UAV-BASED RECEDING HORIZON INSPECTION
PLANNING CONTROL

Essentially, the inspection planning problem discussed in
the previous section is posed in this work as a receding hori-
zon constrained optimal control problem, in which the future
optimal UAV control inputs Ut = {ut|t, .., ut+T−1|t}, t ≤
Tmax are computed at each time-step t, over a finite moving
planning horizon of length T . The first control input of the
sequence is then applied to the UAV and the problem is
solved again for the next time-step. In the proposed approach
the trajectory planning decisions are optimized based on the
mission objective in an on-line fashion, and according to a
set of mission constraints including a) the UAV’s dynamical
and sensing model, b) collision avoidance constraints and c)
duplication of effort constraints.

Next we discuss the details of the proposed receding
horizon inspection planning controller for a single cuboid-
like structure that needs to be inspected. Specifically, we
have transformed the optimal control inspection planning
problem shown in (P1), into a mixed integer quadratic
program (MIQP), as shown in detail in problem (P2), which
can be solved using readily available optimization solvers
[37]. We will begin the analysis of the proposed approach
by first discussing the mission constraints i.e., Eqn. (8b) -
Eqn. (8t). Then, we discuss in detail how we have designed
the multi-objective cost function i.e., Eqn. (8a) that drives
the inspection planning mission.

A. Inspection Constraints
The first two constraints in Eqn. (8b) and Eqn. (8c) are

due to the agent’s dynamical model as already discussed in
Sec III-A. The next constraint shown in Eqn. (8d) computes

Problem (P2): Inspection Controller

arg min
Ut

JInspection, t ≤ Tmax (8a)

subject to τ ∈ {0, . . . , T − 1}:
xt+τ+1|t = Axt+τ |t +But+τ |t ∀τ (8b)
xt|t = xt|t−1 (8c)

dface
τ,i = |Hipt+τ+1|t − Ci| ∀τ, i (8d)

`τ,i = g(dface
τ,i ) ∀τ, i (8e)

Ji,cpt+τ+1|t + (M −Ki,c)b
1
τ,i,c ≤M (8f)

∀τ, i, c = [1, .., 5]

5b2τ,i −
5∑
c=1

b1τ,i,c ≤ 0 ∀τ, i (8g)

L∑
i=1

b2τ,i ≤ 1 ∀τ (8h)

Ωi,cξ
i
jb

3
τ,i,j,c − Ωi,cpt+τ+1|tb

3
τ,i,j,c −

`τ,i
2
≤ 0 (8i)

∀τ, i, j, c = [1, .., 4]

4b4τ,i,j −
4∑
c=1

b3τ,i,j,c ≤ 0 ∀τ, i, j (8j)

κ1τ,i,j = b2τ,i ∧ b4τ,i,j ∀τ, i, j (8k)

κ2τ,i,j ≤ κ1τ,i,j +Qi,j ∀τ, i, j (8l)
T−1∑
τ=0

κ2τ,i,j ≤ 1 ∀i, j (8m)

κ2τ,i,j ∗ dface
τ,i ≤ Dmax ∀τ, i, j (8n)

Φlpt+τ+1|t ≥ Γl −Moτ,l ∀τ, l (8o)
6∑
l=1

oτ,l ≤ 5 ∀τ (8p)

xt+τ+1|t ∈ X , ut+τ |t ∈ U ∀τ (8q)

b1τ,i,c, b
2
τ,i, b

3
τ,i,j,c, b

4
τ,i,j ∈ {0, 1} ∀τ, i, j, c (8r)

κ1τ,i,j , κ
2
τ,i,j ,Qi,j , oτ,l ∈ {0, 1} ∀τ, i, j, l (8s)

i = [1, .., |L|], j = [1, .., Ni], l = [1, .., 6] (8t)

the distance between the agent’s position pt+τ+1|t (also
abbreviated as pτ ) and every face fi, i ∈ L of the cuboid-
like structure C for all future time-steps τ ∈ {0, . . . , T − 1}
inside the planning horizon, where for brevity we have used
the notation dface

τ,i to mean dface
t+τ+1|t,i. In Eqn. (8d), H is

a matrix with dimensions |L|-by-3, where |L| denotes the
number of cuboid faces which need to be inspected, and C
is a |L|-by-1 column vector. The distance dface

τ,i between the
agent with position pτ and the ith face is defined here as the
1-norm distance between pτ and its orthogonal projection on
the plane which contains fi, i.e., the perpendicular distance
to the nearest point on the plane. For instance, let the plane
(with equation x = a) which is parallel to the zy-axis to
contain the ith face of the cuboid to be inspected, and the
agent to be located in front of fi as shown in Fig. 1, with
pτ = [pτ (x), pτ (y), pτ (z)]>. In this example the ith row of
the matrix H is given by Hi = [1, 0, 0] and Ci = a. Thus
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Fig. 3. The UAV agent with position pτ is viewing the blue face of
the cuboid-like structure when a) the projection p̃τ of its position on the
that face resides inside the face’s rectangular region (i.e., blue shaded area)
and b) pτ resides inside the positive half-space created by the plane A
(φ> · x = γ) which contains the blue face as shown above, where φ
denotes the outward normal vector on A.

the distance between the agent and the face fi is computed
as dface

τ,i = |Hipt+τ+1|t − Ci| = |pτ (x) − a|. In a similar
fashion, H and C are populated for all faces |L| that need
to be inspected and the distance between the agent and all
the cuboid faces is computed for all time-steps inside the
planning horizon using Eqn. (8d).

The next constraint shown in Eqn. (8e) computes the size
of the projected camera FOV on every face i of the cuboid to
be inspected for all time-steps τ inside the planning horizon.
Specifically, the side length `τ,i of the projected square
camera FOV is computed as a function of the distance dface

τ,i
between the agent and each face fi i.e.:,

`τ,i = g(dface
τ,i ), ∀τ, i (9)

where g(.) is a linear or piecewise linear function with
respect to the input (i.e., Eqn. (3)), and again `t+τ+1|t,i has
been abbreviated as `τ,i for notational clarity.

The constraints in Eqn. (8f) - Eqn. (8h) use the binary
variables b1τ,i,c and b2τ,i to determine whether the agent’s
camera is viewing any of the cuboid’s faces and if it does,
identify on which face the camera’s FOV is being projected.
This is illustrated in Fig. 3, where the agent with position pτ
is viewing the ith face of the cuboid (shown in blue color),
with vertices V = [v1 v2 v3 v4] where v1 = [x, y1, z1]>,
v2 = [x, y1, z2]>, v3 = [x, y2, z2]> and v4 = [x, y2, z1]>.
As shown in the figure, the face fi is contained within the
plane A with equation φ> · x = γ, where φ is the outward
normal to the plane, x is an arbitrary point on the plane and γ
is a constant. Let us denote the projection of pτ on the plane
A as p̃τ = [pτ (y), pτ (z)]> ∈ R2,1. Now we can determine
whether the agent is viewing face fi with the following
two conditions which must be satisfied simultaneously: (a)
the agent’s projected position p̃τ resides inside face fi i.e.,
y1 ≤ pτ (y) ≤ y2 and z1 ≤ pτ (z) ≤ z2 and (b) the agent
must be located in front of face fi or equivalently the agent
must reside inside the positive half-space formed by the plane
A which contains face fi i.e., φ> · x ≥ γ as illustrated in
Fig. 3. Condition (a) can be written more compactly in matrix
form as J̃i · pτ ≤ K̃i where:

J̃i =

0 −1 0
0 1 0
0 0 −1
0 0 1

 , and K̃i =

−y1y2−z1
z2

 (10)
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Fig. 4. The 3D feature-point ξij = [ξij(x), ξ
i
j(y), ξ

i
j(z)]

> is planned to
be inspected by the UAV agent pτ at time-step τ , when it resides inside
the agent’s camera projected FOV at time τ i.e., ξij ∈ F iτ . In the example
illustrated above this is equivalent to the following constraints: pτ (y)− `

2
≤

ξij(y) ≤ pτ (y) +
`
2

and pτ (z)− `
2
≤ ξij(z) ≤ pτ (z) +

`
2

.

Subsequently, the matrix Ji and the column vector Ki in
Eqn. (8f) are defined for face fi as Ji = [J̃i φ

>] and
Ki = [K̃i γ]. Thus Ji and Ki have dimensions 5 × 3
and 5 × 1 respectively. Thus, the agent is viewing face fi
if all 5 constraints discussed above are being satisfied. The
constraints in Eqn. (8f) - Eqn. (8h), also shown below, can
now be explained as follows:

Ji,cpt+τ+1|t + (M −Ki,c)b
1
τ,i,c ≤M, ∀τ, i, c = [1, ..5]

5b2τ,i −
5∑
c=1

b1τ,i,c ≤ 0, ∀τ, i

L∑
i=1

b2τ,i ≤ 1, ∀τ

First, the binary variable b1τ,i,c is used to indicate whether
at time τ inside the planning horizon (or equivalently at time
t+ τ + 1|t), the constraint c (out of 5) is true for face fi. If
the cth constraint is true then b1τ,i,c is activated i.e., b1τ,i,c = 1.
Otherwise, b1τ,i,c = 0 and the inequality in Eqn. (8f) becomes
Ji,cpt+τ+1|t ≤M which is always true for a large constant
M . Then, the constraint in Eqn. (8g) uses the binary variable
b2τ,i to determine whether b1τ,i,c = 1,∀c = [1, ..5], in which
case b2τ,i is activated i.e., b2τ,i = 1. Thus the binary variable
b2τ,i is used to determine whether face fi is being viewed
by the agent at some point in time τ . Observe that, Eqn.
(8g) is also satisfied when b2τ,i = 0. Finally, the constraint
in Eqn. (8h) makes sure that at any point in time τ at most
one face is being viewed by the agent, which is added here
for numerical stability purposes.

Moving forward with the analysis of the proposed receding
horizon 3D inspection controller, the constraints in Eqn. (8i) -
Eqn. (8j) (also shown below), use the binary variables b3τ,i,j,c
and b4τ,i,j to determine whether the jth feature-point, on the
ith face of the cuboid resides inside the agent’s camera FOV
projection F̃ iτ at time τ .

Ωi,cξ
i
jb

3
τ,i,j,c − Ωi,cpt+τ+1|tb

3
τ,i,j,c −

`τ,i
2
≤ 0, ∀τ, i, j, c

4b4τ,i,j −
4∑
c=1

b3τ,i,j,c ≤ 0, ∀τ, i, j

The constraint in Eqn. (8i) is illustrated more clearly with
an example in Fig. 4. First observe that the agent’s position



pτ is determined by the constraints in Eqn. (8b) and Eqn.
(8c). The camera FOV projection F̃ iτ (colored green) on the
ith face at time τ is a square, centered at p̃τ = [pτ (y)pτ (z)]
(i.e., the projection of the agent’s position on the face fi),
with side length `τ,i given by Eqn. (8e), governed by the
distance between the agent and face fi as determined by
Eqn. (8d). The notation F̃ iτ ,∀i is used here to indicate the
hypothetical FOV projection on the ith face of the cuboid
at time τ , assuming that the ith face is actually being
observed. Thus, the procedure described in this paragraph
computes the hypothetical FOV projection on all |L| cuboid
faces to determine which feature-points are included in each
hypothetical FOV projection. As we discuss in the next
paragraph at every time instance τ only one FOV projection
is active which is instead denoted by F iτ , and determined as
explained next.

To continue our discussion observe from Fig. 4, that an
arbitrary feature-point ξij = [ξij(x), ξij(y), ξij(z)]

> ∈ R3,1

resides inside the hypothetical projected FOV F̃ iτ when:

pτ (y)− `

2
≤ ξij(y) ≤ pτ (y) +

`

2
(11a)

pτ (z)− `

2
≤ ξij(z) ≤ pτ (z) +

`

2
(11b)

The constraints in Eqn. (11) can be written in matrix form
as:0 1 0

0 −1 0
0 0 1
0 0 −1

ξij(x)
ξij(y)
ξij(z)

 ≤
0 1 0

0 −1 0
0 0 1
0 0 −1

[
pτ (x)
pτ (y)
pτ (z)

]
+
`τ,i
2

or more compactly as Ωiξ
i
j ≤ Ωipτ + 0.5`τ,i. Therefore, Ωi

is a matrix with size 4-by-3 which encodes the 4 constraints
that need to be satisfied in order for feature-point ξij on
the ith face of the cuboid to be included inside the agent’s
hypothetical FOV F̃ iτ at time τ when the agent is located at
pτ . This is achieved with the binary variable b3τ,i,j,c which
is activated when constraint c (out of 4) is true. Otherwise
b3τ,i,j,c = 0. Subsequently, the binary variable b4τ,i,j in Eqn.
(8j) is activated when all 4 constraints are true i.e., b3τ,i,j,c =
1,∀c = [1, ..4]. Thus, b4τ,i,j allows us to determine if at time
τ the feature-point j which is on the ith face of the cuboid,
resides inside the hypothetical FOV projection F̃ iτ .

Observe however, that with the binary variable b4τ,i,j alone
we cannot determine whether feature-point ξij is viewed by
the agent. This is because b4τ,i,j does not encode which of
the cuboid faces (if any) is the agent actually viewing at time
τ . Therefore, in order to actually determine if the feature-
point ξij is being observed by the UAV agent at time τ i.e.,
ξij ∈ F iτ , we use the constraint in Eqn. (8k) as shown below:

κ1τ,i,j = b2τ,i ∧ b4τ,i,j , ∀τ, i, j
where we have combined the binary variables b2τ,i and b4τ,i,j
with a logical conjunction. The resulting binary variable
κ1τ,i,j is activated only when both b2τ,i and b4τ,i,j are true.
Thus, the UAV agent views feature-point ξij at time τ , iff
ξij ∈ F̃ iτ indicated by b4τ,i,j and the UAV agent views at the
same time the ith face of the cuboid which is given by b2τ,i.

As we have already mentioned, the UAV agent plans its
inspection trajectory at every time-step t over a moving
finite planning horizon. Since in the majority of scenarios
the inspection mission cannot be completed inside a single
planning horizon, the agent needs to be equipped with some
form of memory or record in order to keep track the mission
progress (i.e., which feature-points are left to be inspected),
and minimize the duplication of work (i.e., avoid inspecting
feature-points that have already been inspected). To enable
this functionality we use the constraint in Eqn. (8l) i.e.,:

κ2τ,i,j ≤ κ1τ,i,j +Qi,j , ∀τ, i, j

where the agent’s memory is being realized with the 2D
matrix Qi,j ∈ {0, 1}, i = [1, ..|L|], j = [1, .., Ni]. When the
UAV agent inspects a particular feature-point ξij the (i, j)-
element of Qi,j is activated. Specifically,

Qi,j =

{
1, iff ∃t ≤ Tmax : ξij ∈ F it
0, o.w

(12)

where as we have previously mentioned F it is the agent’s
projected FOV on the ith face of the cuboid at the current
time-step t. Because κ2τ,i,j is also a binary variable, observe
that with the constraint in Eqn. (8l) the UAV agent has
no incentive in inspecting (during the current and future
planning horizons), a feature-point ξij which has already been
inspected i.e., Qi,j = 1 (assuming Eqn. (8l) is maximized).
This allows the agent to minimize the duplication of work
and plan inspection trajectories towards new feature-points.
Next, the constraint in Eqn. (8m) discourages the agent from
planning trajectories which inspect more than once the same
feature-point inside the current planning horizon.

The quality of the visual inspection task of the cuboid-like
structure inversely decreases with the distance between the
agent and the feature-points to be inspected. In particular, we
assume that for distances beyond a certain cut-off threshold,
the amount of detailed captured by the agent’s camera in not
sufficient for reliably performing its inspection task. For this
reason, we use the constraint in Eqn. (8n) i.e.,

κ2τ,i,j ∗ dface
τ,i ≤ Dmax, ∀τ, i, j (13)

where Dmax denotes the cut-off distance beyond which
the inspection task must not be performed. Consequently,
the agent is forced to inspect feature-points ξij at time τ
(indicated by κ2τ,i,j) i.e., ξij ∈ F iτ , from distances less than
or equal to the cut-off distance.

Finally, the constraints in Eqn. (8o) - Eqn. (8p) implement
collision avoidance constraints with the cuboid-like structure
to be inspected. The objective here is to make sure that the
agent’s position pτ during the planning horizon does not
resides inside the cuboid-like structure i.e., pτ /∈ C which
is accomplished as shown below:

Φlpt+τ+1|t ≥ Γl −Moτ,l, ∀τ, l
6∑
l=1

oτ,l ≤ 5, ∀τ



As we have already discussed in Sec. III-C, the agent
is inside the cuboid-like structure at some time τ when
Φpτ ≤ Γ. Therefore, a collision can be avoided at time
τ when ∃ l ∈ [1, .., 6] : φ>l pτ ≥ γl, which is is implemented
with the inequalities shown above. Specifically, we use the
binary variable oτ,l to determine whether the lth constraint
(i.e., φ>l pτ ≥ γl) is false, in which case oτ,l is activated, i.e.,
oτ,l = 1. Subsequently, the inequality in Eqn. (8p) makes
sure that the number of times oτ,l is activated at a particular
time τ is less than or equal to 5, which indicates that the
agent is outside the cuboid-like structure at time τ . The rest
of the constraints in Eqn. (8q) - Eqn. (8t) restrict the agent’s
state and control inputs within the desired bounds and declare
the various variables used.

B. Inspection Objective

To summarize, at each time-step t ≤ Tmax the au-
tonomous UAV agent computes its future inspection trajec-
tory xt+τ+1|t,∀τ over a finite moving planning horizon i.e.,
τ ∈ {0, .., T − 1} of length T , by taking into account the
mission constraints in Eqn. (8b) - Eqn. (8t) and by optimizing
the mission objective in Eqn. (8a). Specifically, the agent’s
control inputs Ut = {ut|t, .., ut+T−1|t} are chosen such
that the multi-objective cost function JInspection is minimized,
which is defined in this work as follows:

JInspection =

− T−1∑
τ=0

|L|∑
i=1

Ni∑
j=1

κ2τ,i,j(T − τ)

T

 + w × d2target

(14)
The first term shown in Eqn. (14) is used here to maximize
the number of unobserved feature-points over the planning
horizon that reside inside the agent’s projected FOV. As a
reminder, the binary variable κ2τ,i,j indicates whether at time-
step t + τ + 1|t, the feature-point ξij is included inside the
agent’s projected FOV F it+τ+1|t. Therefore, by minimizing
the term inside the parenthesis, the UAV agent generates
inspection plans which allow at each time-step τ of the
planning horizon the maximum number of feature-points to
be included inside the camera’s projected FOV. Also note
here that the weight factor (T−τ)T−1 which multiplies κ2τ,i,j
drives the UAV agent to want to inspect feature-points at the
earliest possible time. Moreover, due to the constraint in Eqn.
(8l), this sub-objective makes sure that the feature-points that
are planned to be inspected have not been inspected in the
past. Moreover, the constraint in Eqn. (8n) makes sure that
the inspection planning will take place within the camera’s
working distance i.e., all feature-points will be inspected at
a distance less than or equal to the cut-off distance Dmax.

When the length of the planning horizon is not sufficiently
large, solving the inspection planning problem by solely
optimizing the term in the parenthesis becomes infeasible.
This is because without a sufficiently large planning horizon
the generated inspection trajectory would not be able to reach
all feature-points for inspection, and the mission will fail.
In order to make the problem independent of the length of
the planning horizon and to increase the robustness of the
proposed approach we include in the objective function an
additional term (i.e., cost-to-go factor) as shown in Eqn. (14),
(where dtarget = ‖pt+1|t − ξ̂ij‖2) which enables the agent to

(a)

               (b)                                                    (c)

Fig. 5. The figure illustrates an object of interest that needs to be inspected
by the UAV agent. (a)(b) The feature-points that must be observed by the
UAV agent are scattered on the object’s surface, marked with circles. (c)
The ? denotes the agent’s initial location.

greedily move (inside each planning horizon) towards the
nearest unobserved feature-point ξ̂ij i.e.,:

ξ̂ij = arg min
ξij /∈Qi,j

‖pt|t − ξij‖2 (15)

where the notation ξij /∈ Qi,j is used to denote feature-
points that have not be observed and pt|t is the current UAV
position. Thus Eqn. (15) finds the nearest unobserved feature-
point ξ̂ij with respect to the agent’s current position and the
minimization of the square of dtarget drives the agent’s future
position pt+1|t towards ξ̂ij . Therefore, the agent can always
move towards the unobserved feature-points even when no
feature-points can be observed during the current planning
horizon. Finally, w is a tuning weight which determines the
emphasis given to the two sub-objectives.

To summarize, we have presented a receding horizon
inspection control approach which allows an autonomous
UAV agent to inspect in 3D a cuboid-like structure. The
proposed approach, based on the agent’s dynamical and
sensing model, generates inspection plans that enable the
UAV agent to observe a finite number of feature-points
scattered throughout the surface of a cuboid-like structure
by appropriately selecting its control inputs inside a rolling
planning horizon. The mission objective in Eqn. (14) aims at
maximizing the number of unobserved future-points planned
to be inspected inside the planning horizon and thus min-
imizing the mission time. Finally, the mission objective in
Eqn. (14) also makes sure that a feasible solution can be
obtained for planning horizons of arbitrary sizes.

VI. EVALUATION

A. Simulation Setup
For the evaluation of the proposed approach we have

used the following setup: The UAV’s dynamical model is
according to Eqn. (1) with δt = 1s. The UAV’s mass m
and the air resistance coefficient η are set to 3.35kg and
respectively 0.2. The UAV’s control input ut is bounded in
each dimension within the interval [−20, 20]N, the UAV’s
acceleration νt is limited in each dimension within the
interval [−15, 15] m/s and the parameters z0 and z1 are
set to 10 and 0.5 respectively. We assume that the agent
is maneuvering inside a bounded surveillance region of
dimensions 500m by 500m by 250m, and its objective is to
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Fig. 6. The figure illustrated the UAV’s generated inspection trajectory for a simulated scenario with a cuboid-like object of interest containing 20
feature-points.

inspect a cuboid-like object of interest of dimensions 130m
by 100m by 150m as shown in Fig. 5. Specifically, the UAV
agent needs to inspect all feature-points scattered on the
object’s surface (sampled uniformly) denoted by the colored
circles (using different color per face) in Fig. 5(a)(b). As
shown, each of the object’s lateral faces contains 5 feature-
points that need to be inspected by the agent. In this example
the top and bottom face do not contain any feature-points,
thus making the total number of feature-points that need to be
inspected 20. Finally, the planning horizon T is set to 5 time-
steps, the maximum mission time Tmax is set to 100 time-
steps, the tuning weight w in Eqn. (14) is set to w = 0.01
and Dmax = 100m. Our evaluation has been conducted on
a 2GHz laptop computer, with 8GB of RAM, running the
Gurobi v9 solver.

B. Results

The UAV agent starts its mission from the (x, y)-
coordinates (250, 100), hovering 30m above the ground as
shown in Fig. 5(c). As depicted in Fig. 6, the UAV’s executed
trajectory is denoted with −�− whereas the UAV’s predicted
trajectory (i.e., planned trajectory) is denoted by − ◦ −. In
Fig. 6, the feature-points which have not yet been inspected
are shown with clear circles, whereas feature-points which
have been inspected by the UAV agent are shown in solid
circles. Moreover, feature-points which have been planned to
be inspected at some point in the future inside the planning
horizon will be shown as ⊗. As shown in Fig. 6, initially
the UAV agent begins by approaching the face containing
the blue feature-points. More specifically, between time-
steps 1 and 6 the UAV agent is approaching the object of
interest in order to place itself within the specified working
distance Dmax according to the constraint in Eqn. (8n) i.e.,
all feature-points must be inspected from a distance less or
equal to Dmax. At each time-step the UAV agent solves a

finite-horizon optimal control problem which seeks to find
the control inputs inside the planning horizon which will
maximize the number of feature-points that can be inspected,
as discussed in detail in Sec. V-B. This is shown in Fig.
6(a), where at time-step t = 7, the agent manages to inspect
simultaneously 3 feature-points from a single location. As
it is shown, the 3 feature-points which are marked with
solid blue circles reside inside the UAV’s projected FOV
denoted with a blue square. At the subsequent time-step, also
observe that the agent’s prediction plan is headed towards the
nearest unobserved feature-point according to the objective
function defined in Eqn. (14). As it is shown in Fig. 6(b)
the feature-point with (x, y, z) coordinates [245, 250, 120]
has been marked for inspection as illustrated by the ⊗
symbol. Then, at time-step t = 13 the same feature-point
is inspected as shown in Fig. 6(c). Observe that at t = 13
this feature-point resides within the agent’s projected FOV.
Subsequently, the UAV agent moves towards the nearest
unobserved feature-point as shown in Fig. 6(d). The figure
also illustrates the UAV’s executed trajectory so far, along
with its current prediction plan. Once all blue feature-points
have been inspected, the UAV agent moves to the next face
as depicted in Fig. 6(e). Here we can observe the generated
UAV’s trajectory for inspecting the orange feature-points
(time-step t = 41). Finally, at time-step t = 57, the UAV
agent has completed the inspection of the yellow feature-
points as shown in Fig. 6(f), and is moving towards the
object’s final face which contains the purple feature-points.

Figure 7 shows the final inspection trajectory along with
the applied control inputs. In this figure, the UAV’s start
and stop locations are marked with ? and × respectively,
and the inspection trajectory is color-coded according to
the mission elapsed time. As it is shown in the figure all
feature-points are inspected within 66 time-steps. Finally,
Figure 8 shows the UAVs projected FOV along its inspection
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Fig. 7. The figure illustrates: (a)(b) The UAV’s inspection plan in 3D used
to inspect 20 feature-points scattered on the surface of the object of interest.
(c) The control inputs used for generating the inspection trajectory.

trajectory. Observe, that the UAV’s control inputs are selected
in such a way so that resulting FOV projections contain all
the feature-points that need to be inspected, as indicated by
the colored solid circles.

We conclude our evaluation by discussing the computa-
tional complexity of the proposed approach. In general, the
main optimization algorithm which is employed in order to
tackle mixed integer programs (MIP) is that of branch-and-
bound [38], and its complexity is usually due to the number
of integral variables that are being utilized. Specifically,
a branch-and-bound algorithm constructs a search tree by
enumerating in systematic and consistent way candidate
solutions for the MIP problem. Each node of this tree
includes the original MIP problem constraints plus additional
constraints on the bounds of the integer variables. The
algorithm, proceeds by exploring nodes of the tree i.e.,
by solving a linear programming relaxation problem after
dropping all integrality constraints. When the solution to the
linear program consists of an integer constrained variable
with a fractional value (i.e., x = f ), the algorithm generates a
new branch for this variable consisting of two sub-problems
(i.e., nodes) where new integrality constraints are imposed
(i.e., x ≤ bfc and x ≥ dfe). Therefore, the size of this
search tree grows with the number of integral variables and as
a consequence the computational complexity grows as well.

As we have discussed in Sec. V the proposed approach
uses a number of binary variables in order to implement
the desired inspection planning behavior. As shown by the
constraints in Eqn. (8r)-(8s) the number of required binary
variables depends mainly on the number of feature-points
that need to be inspected and on the length of the planning
horizon. To better understand the computational complexity
of the proposed controller, a Monte-Carlo simulation was
conducted, where for the same object of interest we have
varied the number of feature-points that need to be inspected
and the length of the planning horizon, running 20 trials for
each configuration and measuring the average runtime until
the optimal solution is found. More specifically, we have run
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Fig. 8. The figure illustrates the UAV’s projected FOV along its inspection
trajectory, and its size in terms of side length.

Avg. Execution Time (sec)
# feature-points Horizon Length Runtime

12 3 0.645
12 8 1.040
12 15 4.073
20 3 0.621
20 8 1.376
20 15 6.143
32 3 0.653
32 8 1.552
32 15 9.427

the proposed inspection planner with 12, 20 and 32 feature-
points (in each trial the future points are randomly scattered
on the object’s surface area, with equal number of points per
face), and with planning horizons of length 3, 8 and 15 time-
steps. For this experiment the agent is always initialized from
the same location, and the rest of the simulation parameters
are set according Sec. VI-A.

Table VI-B summarizes the results of this experiment in
terms of the average execution time (i.e., the time required
by the solver to find the optimal solution). In particular,
Table VI-B shows the average time (taken over the 20
trials) for each combination of the parameters. The results
verify that the computational complexity increases as the
number of feature-points and the length of the planning
horizon increase. As it is shown, the length of the planning
horizon has the largest impact on the performance of the
proposed approach in terms of runtime (observe that the
planning horizon is involved in every constraint listed in
(P2)). Nevertheless, for some of the configurations of the pa-
rameters the proposed approach shows potential for real-time
execution, considering that these results have been obtained
on a 2GHz laptop computer. It is also worth noting that
additional computational savings can be obtained through
various heuristics and approximations [39]–[41] which can
provide adequate near-optimal MIP solutions in real-time. A
more thorough investigation of the real-time performance of
the proposed approach and its real-world implemetation will
be investigated in future works.

VII. CONCLUSION

In this work, we have tackled the problem of UAV-based
automated planning, guidance and control for 3D inspec-
tion missions. We have formulated the inspection planning
problem as a constrained receding horizon optimal control



problem, in where the UAV’s control inputs are optimally
determined to enable the generation of efficient inspection
trajectories of cuboid-like structures. We have derived a
mixed-integer mathematical program which can be solved
using off-the-shelf optimization solvers, and we have demon-
strated its effectiveness through synthetic qualitative and
quantitative experiments. In the future, we plan to extend the
proposed approach to multiple UAV agents, and investigate
its real-world performance.
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