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Abstract— This work considers the problem of passively mon-
itoring multiple moving targets with a single Unmanned Aerial
Vehicle (UAV) agent equipped with a direction-finding radar
(i.e., a bearings-only sensor). This is in general a challenging
problem due to the unobservability of the target states, and the
highly non-linear measurement process. In addition to these
challenges, in this work we also consider: a) environments with
multiple obstacles where the targets need to be tracked as they
manoeuvre through the obstacles, and b) multiple false-alarm
measurements caused by the cluttered environment. To address
these challenges we first design a model predictive guidance
controller which is used to plan hypothetical target trajectories
over a rolling finite planning horizon. We then formulate a
joint estimation and control problem where the trajectory of
the UAV agent is optimized to achieve optimal multi-target
monitoring through stochastic-filtering which accounts for the
target model uncertainty, the noisy measurement process, and
the false-alarms. Extensive simulation results demonstrate the
effectiveness of the proposed approach.

I. INTRODUCTION

Increased mobility, flexibility, and rapid deployment are
highly desirable properties in many application domains.
Nowadays, Unmanned Aerial Vehicles (UAV) have demon-
strated their potential in a wide variety of applications span-
ning from consumer to disaster management scenarios. These
include supporting wireless communication networks [1],
delivering goods [2], surveillance and security tasks [3]–[6],
search and rescue missions [7]–[9], and situational awareness
for first responders in emergency operations [10]. To meet
the requirements in the above-mentioned applications, UAV
agents may carry on-board various sensors including cameras
(e.g., optical, thermal, multi-spectral, LiDAR, etc.), ranging
devices that measure the agent-target distance using their
radio frequency communication link (e.g., through timing,
angle, or signal strength measurements), direction-finders
that passively scan the spectrum to detect and resolve the
direction of a target transmission through signal process-
ing, radars that provide the direction and/or distance by
processing the reflections on objects by either purposefully
transmitted signals (i.e., active radar) or by ambient signals
of opportunity such as FM radio, DVB-T, etc. (i.e., passive
radar).
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Passive systems, e.g., based on radar technology [11],
are less power demanding as no signal transmissions are
required, thus extending the UAV agent’s flight time. While
this makes them preferable in many practical scenarios, such
systems typically provide bearing-only measurements, i.e.,
the angle between the target-agent line and a reference di-
rection (e.g., magnetic north). In this case several challenges
appear due to the highly nonlinear measurement process, and
the unobservability of the target states, especially when a
single UAV agent in considered; see [12] for an overview of
methods for single and multi-sensor bearing-only tracking.

Several existing solutions assume multiple agents to per-
form the intended task which leads to a standard multi-target
tracking problem [13], where unobservability is no longer an
issue. We rather focus on applications that necessitate the use
of a single agent due to various scenario-specific limitations.
For instance, in emergency management scenarios where
swift response is critical, the deployment of multiple UAVs
may introduce delays in the mission. In addition, using a
group of UAVs has inherent computational and communi-
cation overhead for multi-agent control and coordination.
In other scenarios where the budget is important, using
more than one agents may be cost-prohibitive if the payload
includes specialized sensing devices or the UAV itself is
expensive. Finally, in military and defence applications it
may be desirable to deploy a single agent to reduce the risk
of being detected by the enemy forces.

Furthermore, in such scenarios the agent is envisioned
to operate autonomously in complex settings with multiple
physical obstacles. Therefore, the targets need to be mon-
itored accurately as they manoeuvre through the obstacles,
while the cluttered environment introduces noisy and false-
alarm measurements due to multi-path signal propagation
and reflections, which makes the joint estimation and control
even more challenging. On top of that, spatial constraints
may exist that do not allow the agent to move freely inside
the area of interest, but rather operate within a bounded
sub-region. For instance, an agent operating for situational
awareness may need to stay behind no-fly zones, avoid
moving through critical infrastructure facilities, or flying over
crowds. Similarly, in a defence scenario the agent needs
to fly at a safe distance behind the enemy lines to avoid
detection. Under such constraints, it may not be possible
to optimally monitor multiple targets; yet, it is important
to meet the mission objectives (e.g., deliver adequate target
tracking accuracy).

To our knowledge, existing works do not sufficiently ad-
dress togetner these challenges, i.e., using a single UAV agent
to monitor multiple targets that manoeuvre through obstacles



as well as estimating the target states and controlling the
agent in the presence of noisy and false-alarm measurements.
To this end, our contribution is this work is threefold:

• We introduce a flexible obstacle model and formulate
the problem of target manoeuvring through various
obstacles as a model predictive control problem. In par-
ticular, the proposed mixed integer guidance controller
is used to design hypothetical target trajectories, which
are then refined through stochastic filtering.

• We formulate a joint estimation and control problem,
where the trajectory of the UAV agent is optimized for
minimizing the estimation error of the target states in
environments with obstacles resulting in multiple noisy
and false-alarm measurements.

• We consider spatial constraints in the agent’s move-
ments and investigate various pre-computed manoeuvres
that can be performed to maximize the monitoring
performance, while the agent is moving within specific
boundaries. We compare these manoeuvres against the
optimal trajectory produced by our controller and report
our findings in a realistic simulation environment.

The rest of the paper is structured as follows. Section II
overviews related works on passive target monitoring using
bearings-only measurements with a focus on the control
aspects of autonomous agents. Section III introduces the
system model including the target and agent mobility dy-
namics, the agent sensing model for bearings-only mea-
surements, and the obstacle model. The proposed model
predictive control approach for planning realistic trajectories
for multiple targets is described in Section IV. Section V
presents the proposed joint estimation and control approach
for passive multi-target monitoring using a single UAV agent,
and experimental results in a simulated environment are
reported and discussed in Section VI. Finally, Section VII
provides concluding remarks.

II. RELATED WORK

Over the past years a plethora of approaches have been
proposed in the literature for the problem of passive target
monitoring/tracking. A good starting point on the concept
of passive radar, and passive direction-finding systems can
be found in [11]. In this section we will focus mainly on
the task of passive target monitoring with a single UAV
agent which utilizes angle measurements (i.e., bearings), for
estimating the target’s state. This is considered a challenging
problem due to the unobservability of the target states,
the stochastic target dynamics, and the highly nonlinear
measurement process. A recent survey paper on this topic can
be found in [12], while the general problem of monitoring
and tracking single and multiple targets is covered in [13].

Regarding the bearings-only passive target monitoring, the
authors in [14] provide a thorough analysis of 3 different
state-estimation approaches for tracking a single target with
a single sensor, and examine the effects of nonlinearity and
non-observability on this problem. The authors in [15] design
a particle-filter based estimator that uses multiple radar
measurements with glint noise in order to passively monitor
a single moving target. The work in [16] investigates the
concept of fuzzy uncertainty in passive location monitoring

systems, and proposes a robust fuzzy extended Kalman filter
for monitoring a moving target.

With respect to the agent/observer control aspect which
appears in the passive target monitoring applications, the
work in [17] proposes a greedy algorithm for optimally
choosing the measurement locations in order to localize a
stationary target in the least amount of time. Similarly, in
[18] the authors first use the geometric dilution of precision
to characterize the uncertainty of passive target localization
using angle measurements, and then they propose a mea-
surement gathering strategy that jointly minimizes the target
localization error of a stationary target, and the time spend
in gathering the measurements. Authors in [19] examine the
geometry of various navigation schemes in guiding a pursuer
agent from a fixed initial position to a final target position
using successive bearing measurements, and the work in
[20] presents an optimality analysis of various sensor-target
localization geometries for passively localizing a static target.
Authors in [21] formulate the problem of observer control
for bearings-only target localization as an optimal control
problem and they propose a trajectory optimization scheme
based on the maximization of the determinant of the Fisher
information matrix.

The problem of optimally controlling an autonomous
agent/observer for accurate passive monitoring of a moving
target is further investigated in [22], [23]. Specifically, in [22]
various particle-filter estimators are proposed based on the
multiple model jump Markov system framework to tackle the
various maneuvers of the target, whereas in [23] the observer
control is posed as stochastic optimal control problem which
aims at maximizing the tracking accuracy. In [24] the authors
use the theory of random finite sets [25], and specifically
the Bernoulli filter [26] in order to passively track a single
moving target, with a control strategy which maximizes the
information gain based on the Renyi divergence.

III. SYSTEM MODELLING

A. Target Dynamics

In this work we assume that a known number of M
ground targets xj , j ∈ [1, ..,M ] operate inside a bounded
surveillance environment E ⊂ R3 according to the following
stochastic discrete-time dynamical model:

xj
t = Axj

t−1 +Buj
t−1 + νt−1, j ∈ [1, ..,M ] (1)

where xj
t = [xj

t (x), x
j
t (y), x

j
t (z), ẋ

j
t (x), ẋ

j
t (y), ẋ

j
t (z)]

⊤ ∈
R6 denotes the state of the jth target at time t, which is
composed of the target’s position (xj

t (x), x
j
t (y), x

j
t (z)), and

velocity (ẋj
t (x), ẋ

j
t (y), ẋ

j
t (z)) components in 3D Cartesian

coordinates. The control input uj
t ∈ R3 denotes the applied

control force which allows the target to change its direction
and speed, and the term νt is the process noise which models
the uncertainty on the target’s state, and which is distributed
according to a zero mean multi-variate Gaussian distribution
with covariance matrix Q, i.e., νt ∼ N (0, Q). Without loss
of generality we assume that the process noise profile is the
same for all targets. The matrices A and B are defined as:

A =

[
I3×3 ∆t · I3×3

03×3 (1− ε) · I3×3

]
, B =

[
03×3

∆t
m · I3×3

]
, (2)



where ∆t is the sampling interval, ε ∈ [0, 1] models the
effect of friction on the target’s velocity, and m is the target
mass which for brevity we assume to be the same for all tar-
gets. Moreover, I3×3, and 03×3 denote the identity and zero
matrices of size 3-by-3 respectively. Finally, it is assumed
that during a reconnaissance phase, the approximate target
initial location, and final destination have been acquired and
made available to the UAV agent. Therefore, we assume
that: a) target’s j initial state xj

0 is distributed according to
xj
0 ∼ N (µj

0,Σ
j
0), and b) the target j is moving towards a

goal region on the ground denoted hereafter as Gj ⊂ R3.

B. Agent Dynamics

An autonomous UAV agent/observer, equipped with a pas-
sive direction-finding radar which is calibrated for a certain
altitude h, is deployed inside the surveillance environment
E with the purpose of monitoring the trajectories of the M
targets on the ground. The state of the UAV agent at time-step
t i.e., st = [st(x), st(y), st(z)]

⊤ ∈ E which is composed of
the agent’s position in cartesian coordinates, evolves in time
according to:st(x)st(y)

st(z)

=
st−1(x)
st−1(y)

h

+
λ∆rcos(κ∆θ)
λ∆rsin(κ∆θ)

0

, λ ∈ [0, .., Nr]
κ ∈ [1, .., Nθ]

, (3)

where ∆r is the radial step size, ∆θ = 2π/Nθ, and
the parameters (Nr, Nθ) specify the set St containing
all possible states st ∈ St which the agent can take
at time-step t. Therefore, the set St is given by: St =
{(st−1(x) + λ∆rcos(κ∆θ), st−1(y) + λ∆rsin(κ∆θ), h)},
∀λ ∈ [0, .., Nr], ∀κ ∈ [0, .., Nθ].

C. Agent Sensing Model

As already mentioned the UAV agent is equipped with
a passive radar (i.e., a direction-finder) which is used for
monitoring nearby ground targets operating inside its sensing
range. Specifically, at each time-step t, the UAV agent
receives a set of noisy angular measurements (i.e., bearings)
from each target j, denoted as Φj

t = {ϕj
t,1, .., ϕ

j

t,|Φj
t |
}, ϕj

t,i ∈
(−π, π] rad, where the number of total received measure-
ments, i.e., |Φj

t | (|.| denotes the set cardinality), is random.
In particular, it is assumed that due to various obstacles
and clutter in the environment the UAV agent receives at
each time-step t: a) with a Poisson rate Λ multiple false-
alarm measurements (denoted as ϕ̃j

t,i ∈ Φj
t ) which are

distributed over the measurement space according to the
probability distribution pϕ̃(ϕ̃

j
t,i), and b) a single bearing

measurement ϕ̂j
t ∈ Φj

t from the target j with probability
pD. The target generated measurement ϕ̂j

t is related to the
target and agent states according to the measurement model
ϕ̂j
t = ℓ(xj

t , st) + wt, where:

ℓ(xj
t , st) = tan−1

(
xj
t (x)− st(x)

xj
t (y)− st(y)

)
, (4)

and wt is a Gaussian random variable which models the
measurement noise, and which is distributed according to
wt ∼ N (0, σ2

ϕ). Without loss of generality we assume that
the same target detection probability, false-alarm rate, and the

measurement noise applies for all targets, since all targets are
sensed by the same radar equipment. In addition, we assume
in this work that the targets are sensed by the UAV agent
through different communication channels.

D. Obstacle Model
We consider the existence of multiple convex obstacles

ξn ∈ Ξ, n ∈ [1, .., |Ξ|] inside the surveillance area E , which
are represented in this work as cuboids of arbitrary sizes. In
particular, a regular cuboid ξ is a box-shaped object with six
rectangular faces, and 8 right angles; therefore, a point p =
[p(x), p(y), p(z)]⊤ ∈ R3 that resides inside the convex-hull
of cuboid ξn must satisfy the following 6 linear inequalities:

an1 (x)p(x) + an1 (y)p(y) + an1 (z)p(z) ≤ bn1 ,

an2 (x)p(x) + an2 (y)p(y) + an2 (z)p(z) ≤ bn2 ,

...
an6 (x)p(x) + an6 (y)p(y) + an6 (z)p(z) ≤ bn6 ,

where an
i = [ani (x), a

n
i (y), a

n
i (z)], i ∈ [1, .., 6] is the

outward unit normal vector on the ith face of the nth
cuboid obstacle, and bni is a constant obtained from the dot
product between αn

i and a known point on the plane which
contains the ith face. This obstacle model has the flexibility
to create 3D objects of varying dimensions, thus adequately
representing real-world settings.

Suppose now that p describes the position of a target xj
t at

time-step t. This target, can avoid a potential collision with
obstacle ξn when the following condition holds:

∃ i ∈ [1, .., 6] : dot(an
i ,p) > bni , (5)

where dot(a, b) is the dot product between vectors a and b. In
essence, we require that the target’s position resides outside
the convex-hull of obstacle ξn, n ∈ [1, .., |Ξ|].

IV. TARGET TRAJECTORY PLANNING

As we have already mentioned in Sec. III-A, for each
target j we consider the availability of the following in-
formation: a) its approximate initial location, i.e., we know
that the state of target j is initially distributed according
to xj

0 ∼ N (µj
0,Σ

j
0), and b) its final destination, i.e., we

know that target’s j objective is to move towards, and reach
a specific goal region Gj . Based on these information, and
in combination with a known map of the environment (i.e.,
in this work we use information regarding the position, and
dimensions of various obstacles), the objective is to generate
a hypothetical trajectory for each target, which can then be
passively monitored through sensing, i.e., via the received
bearing measurements, as discussed in Sec. III-C.

To do that, the target trajectory hypothesis generation
is formulated in this work as a model predictive control
problem, where we seek to find target’s j hypothetical control
inputs U j

t = {uj
t+τ |t},∀τ ∈ [0, .., T − 1] inside a rolling

finite planning horizon of length T time-steps, which enable
the guidance of the target to its goal region, subject to
kinematic and collision avoidance constraints.

Let us denote the future hypothetical trajectory of target
j over a planning horizon of length T time-steps, as Xj

t =
{xj

t+τ+1|t},∀τ ∈ [0, .., T − 1], where the notation xt′|t is



used here to denote the predicted target state at time-step t′

which was generated at time-step t. Now, based on Eq. (1),
observe that the target trajectory Xj

t is in fact a stochastic
process, with each future target state xj

t+τ+1|t,∀τ , to be
distributed according to xj

t+τ+1|t ∼ N (µj
t+τ+1|t,Σ

j
t+τ+1|t),

where µj
t+τ+1|t, and Σj

t+τ+1|t are given by:

µj
t+τ+1|t = Aτ+1µj

t +

τ∑
k=0

Aτ−kBuj
t+k|t,

Σj
t+τ+1|t = Aτ+1Σj

t (A
⊤)τ+1+

τ∑
k=0

Aτ−kQ(A⊤)τ−k.

(6)

Observe that Eq. (6), has been obtained from the recursive
application of Eq. (1). The parameters µj

t , and Σj
t are

respectively the mean, and covariance matrix of the target
state at time-step t, which for time-step t = 0 are given by
µj

0 and Σj
0 respectively. In order to generate the trajectory

which guides target j to its goal region Gj , the following
cost function is minimized for the control inputs U j

t =
{uj

t+τ |t},∀τ ∈ [0, .., T − 1]:

argmin
Ut

E[J j(Xj
t , U

j
t )] = ∥µj,pos

t+T |t − Gj
o∥22

+ ϱ

T−1∑
τ=1

∥uj
t+τ |t − uj

t+τ−1|t∥
2
2,

(7)

where E is the expectation operator, ∥.∥2 is the 2-norm,
µj,pos

t+T |t is the predicted mean of the target’s position at the
end of the planning horizon computed with Eq. (6), and Gj

o

is the centroid point of the goal region Gj on the ground.
The second term in Eq. (7) is used in order to minimize
abrupt changes in the target’s direction and speed, and thus
produce more realistic smooth trajectories. Therefore, the
tuning weight ϱ controls the emphasis given to this secondary
objective.

The predicted target trajectory for agent j is then generated
with the guidance controller shown in Problem (P1). As
shown in Problem (P1), at each time-step t the optimal con-
trol inputs U j

t = {uj
t+τ |t},∀τ ∈ [0, .., T − 1] are computed

over a rolling planning horizon of length T time-steps, by
solving an open-loop optimal control problem shown, which
essentially drives the target to its goal region, while at the
same time considering obstacle avoidance constraints. Once
the sequence of control inputs is determined, the first control
input uj

t|t in the sequence is applied to the target, and the
procedure described above is repeated for the next time-step.

Specifically, in Problem (P1) the constraint in Eq. (8b)
computes the expected state of target j (i.e., µj

t+τ+1|t) inside
the planning horizon, which has an associated covariance
matrix Σj

t+τ+1|t. Observe that the covariance matrix does
not depend on the generated control inputs, and thus can be
pre-computed as shown in Eq. (6). The constraints shown
in Eq. (8c) state that the target distribution for time-step t is
initialized with the posterior distribution of the previous time-
step i.e., N (µ̂j

t|t−1, Σ̂
j
t|t−1) which is computed via stochastic

filtering as discussed in Sec. V.
The constraints in Eq. (8d)-(8e) enable the generation of

collision-free trajectories, by making sure that all targets

Problem (P1) : Guidance Controller

min
Uj

t

E[J j(Xj
t , U

j
t )] ∀j (8a)

subject to τ ∈ [0, .., T − 1]:

µj
t+τ+1|t = Aτ+1µj

t +

τ∑
k=0

Aτ−kBuj
t+k|t, ∀τ, j (8b)

µj
t = µ̂j

t|t−1,Σ
j
t = Σ̂j

t|t−1, ∀j (8c)

dot(an
i ,µ

j,pos
t+τ+1|t) > bni −Hyj,nτ,i , ∀τ, j, n, i (8d)

6∑
i=1

yj,nτ,i ≤ 5, ∀τ, j, n (8e)

Xj
t ∈ X , U j

t ∈ U (8f)

yj,nτ,i ∈ {0, 1}, n = [1, .., |Ξ|], i = [1, .., 6]

avoid collisions with the obstacles in the environment. As a
reminder, a collision with some obstacle ξn, n = [1, .., |Ξ|],
which is represented as a cuboid, is avoided at time-step t
when the target state (i.e., its position coordinates) resides
outside the convex hull of ξn as explained in Sec. III-D. In
order to enable this functionality we use the binary variable
yj,nτ,i ∈ {0, 1} which is activated i.e., yj,nτ,i = 1 when the
inequality dot(an

i ,µ
j,pos
t+τ+1|t) > bni is not satisfied for target

j with position µj,pos
t+τ+1|t at time-step t + τ + 1|t, and the

ith face of the nth obstacle. In such cases the activation of
yj,nτ,i makes the constraint shown in Eq. (8d) valid with the
utilization of a large positive constant H ∈ Z+. Now, as
discussed in Sec. III-D a collision is avoided at time-step
t+ τ +1|t between the target j with state µj,pos

t+τ+1|t, and the
obstacle ξn when ∃ i ∈ [1, .., 6] : dot(an

i ,µ
j,pos
t+τ+1|t) > bni ,

which is achieved via the constraint in Eq. (8e) by enforcing
the binary variable yj,nτ,i to take the value of zero for at least
one face i.e., ∃i ∈ [1, .., 6] : yj,nτ,i = 0. Finally, the constraints
in Eq. (8f) restrict the target’s speed and control inputs within
the desired limits. We should point out that Problem (P1) is
a mixed integer quadratic program (MIQP), which can be
solved efficiently using off-the-shelf optimization tools [27].

V. AUTONOMOUS UAV CONTROL FOR PASSIVE
MULTI-TARGET MONITORING

A. Target State Estimation

In order to improve the monitoring performance of the
targets while at the same time remaining undetected, the
UAV agent utilizes passive sensing. Subsequently, the agent
uses its direction-finding radar to obtain at each time-step
t, and for each target j a set of bearing measurements Φj

t

as discussed in Sec. III-C. These measurements are then
utilized to improve the estimation of the target states through
stochastic filtering [28].

More specifically, for each target j the UAV agent main-
tains a Bayes filter [29], which uses in order to compute,
and recursively update over time its belief (i.e., a probability
distribution) on the state of each target. This is shown in Eq.
(9) where we denote as bel(xj

t+1) the agent’s initial belief
on the state of target j for the next time-step t+1, and with



b̂el(xj
t+1) we denote the posterior belief on the target’s state

after incorporating the received target measurements.

bel(xj
t+1) =

∫
f(xj

t+1|x
j
t ,u

j
t )b̂el(x

j
t )dx

j
t (9a)

b̂el(xj
t+1) = η−1g(Φj

t+1|x
j
t+1, st+1)bel(x

j
t+1) (9b)

The agent’s initial belief bel(xj
t+1) is computed through

the prediction step shown in Eq. (9a), where f(xj
t+1|x

j
t ,u

j
t )

is the target state transition density which is governed by
the target dynamics in Eq. (1), and therefore is given by
f(xj

t+1|x
j
t ,u

j
t ) = N (Axj

t + Buj
t , Q). On the other hand,

b̂el(xj
t ) is the posterior belief of the current time-step i.e.,

b̂el(xj
t ) = N (µ̂j

t , Σ̂
j
t ), and thus bel(xj

t+1) = N (Aµ̂j
t +

Buj
t , AΣ̂

j
tA

⊤+Q). Observe that this result is also obtained
from Eq. (6) by setting τ = 0, to obtain the one step look-
ahead predictive density for the state of target j computed
at time-step t i.e., xj

t+1|t ∼ N (µj
t+1|t,Σ

j
t+1|t) = bel(xj

t+1).
Subsequently, at time-step t + 1 the agent with state

st+1 receives from each target j the measurement set
Φj

t+1, and updates its belief by computing b̂el(xt+1)
with the update step shown in Eq.(9b). Specifically,
η =

∫
g(Φj

t+1|x
j
t+1, st+1)bel(x

j
t+1)dx

j
t+1 is a normal-

izing constant, and the measurement likelihood function
g(Φj

t+1|x
j
t+1, st+1) gives the likelihood that the agent with

state st+1 will receive at time-step t + 1 the measurement
set Φj

t+1 from target j with state xj
t+1.

To compute this likelihood function, first observe that the
measurement set Φj

t+1 contains a random number of ran-
dom measurements i.e., multiple false-alarm measurements
ϕ̃j
t+1,i ∈ Φj

t+1 coming with a Poisson rate Λ, which are
distributed according to pϕ̃(ϕ̃

j
t+1,i), and up to one target

measurement ϕ̂j
t+1 ∈ Φj

t+1 which is received with proba-
bility pD, and which is distributed according to c(ϕ̂j

t+1) =

N (ϕ̂j
t+1; ℓ(x

j
t+1, st+1), σ

2
ϕ) as discussed in Sec. III-C. That

said, the measurement likelihood function is derived as:

g(Φj
t+1|x

j
t+1, st+1) = (1− pD)nj !Ψ(nj ; Λ)

∏
ϕ∈Φt+1

pϕ̃(ϕ)

+ (nj − 1)!Ψ(nj − 1; Λ)pD
∑

ϕ∈Φt+1

c(ϕ)
∏

φ∈Φt+1

φ̸=ϕ

pϕ̃(φ) (10)

where nj = |Φj
t+1| is the total number of received mea-

surements, and Ψ(nj ; Λ) is probability mass function of
the Poisson distribution with rate parameter Λ, and input
argument nj . Therefore, the first term in Eq. (10) computes
the event of receiving at time-step t + 1 exactly nj false-
alarm measurements (i.e., Ψ(nj ; Λ)

∏
ϕ∈Φt+1

pϕ̃(ϕ)), and no
measurement from target j, i.e., the target is not detected
with probability (1 − pD); and the factor nj ! accounts for
all possible permutations of the measurements in the set. On
the other hand, the second term in Eq. (10) accounts for
the event where the measurement set Φj

t+1 contains a single
target measurement ϕ̂ with likelihood pDc(ϕ̂), and (n − 1)
false-alarm measurements. Finally, the posterior mean and
covariance of the state of target j for time-step t + 1 is

extracted from b̂el(xj
t+1) as:

µ̂j
t+1 =

∫
xj
t+1b̂el(x

j
t+1)dx

j
t+1,

Σ̂j
t+1 = E[(xj

t+1 − µ̂j
t+1)(x

j
t+1 − µ̂j

t+1)
⊤].

(11)

The posterior distribution computed above i.e.,
N (µ̂j

t+1, Σ̂
j
t+1) is used to initialize the guidance controller

for the next time-step, and subsequently, the recursion
shown in Eq. (9) is repeated.

B. Monitoring Control
As shown in Eq. (9b) the quality of target monitoring at the

next time-step t+1 is directly related to the posterior belief
b̂el(xj

t+1),∀j, through the measurement likelihood function
g(Φj

t+1|x
j
t+1, st+1). Essentially, the measurement set Φj

t+1
obtained at time-step t+ 1, from the agent with state st+1,
has the potential to increase the target observability which in
turn can be reflected in the reduced uncertainty on the target
state captured by the posterior belief b̂el(xj

t+1). Moreover,
note that the received measurement set Φj

t+1 is linked to
the agent state st+1 through Eq. (4) i.e., the agent receives
relative angular measurements (bearings) from each target j.
Therefore, in order to optimize the monitoring performance
at time-step t+1 for a particular target j it suffices to select
the agent’s next state ŝt+1 ∈ St+1, which will result in the
gathering of such measurement set Φj

t+1, which maximizes
the target state observability. This strategy, however, cannot
be applied directly since the measurement set Φj

t+1 becomes
available only after the agent moves to its new state ŝt+1. To
overcome this limitation, we follow the procedure described
next: For each admissible agent state st+1 ∈ St+1, we
generate for each target j the hypothetical ideal (i.e., noise-
free, no false-alarms) measurement set Zj

t+1 = {zjt+1},
which would have been received if the agent moves at time-
step t+1 to state st+1, and target j is distributed according to
bel(xj

t+1) (computed with Eq. (9a)), with expected position
denoted as µj,pos

t+1 . That said, the hypothetical measurement
set Zj

t+1 = {zjt+1} is generated as:

zjt+1 = tan−1

(
µj,pos
t+1 (x)− st+1(x)

µj,pos
t+1 (y)− st+1(y)

)
. (12)

Then, for each pair (st+1, z
j
t+1)i, i ∈ [1, .., |St+1|] we com-

pute the pseudo-posterior distribution b̃el(xj
t+1, st+1, z

j
t+1)i

according to Eq. (9b), where the measurement likelihood
function g(zjt+1) is now given by g(zjt+1|x

j
t+1, st+1) =

N (zjt+1; ℓ(x
j
t+1, st+1), σ

2
ϕ). Finally, we extract the pseudo-

posterior target state mean and covariance (µ̃j
t+1, Σ̃

j
t+1)i as

shown in Eq. (11). The optimal state ŝt+1 of the UAV agent
for time-step t + 1 which achieves optimized monitoring
performance is then obtained as:

ŝt+1 = argmin
s∈St+1

M∑
j=1

tr
(
Σ̃j

t+1(s)
)
, (13)

where tr(Σ) is the trace of matrix Σ, and the notation
Σ̃j

t+1(s) denotes the covariance matrix associated with the
pseudo-posterior distribution of the state of the jth target,
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⌥ Observer initial location
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Target 1 planned trajectory
Target 2 planned trajectory

Target 4 planned trajectory
Target 3 planned trajectory

Fig. 1. The figure illustrates the proposed target trajectory hypothesis generation approach, which is realized with the guidance controller shown in
Problem (P1), and allows the 4 targets to be guided to the goal region while avoiding collisions with the obstacles in the environment.

which was obtained under the assumption that the agent
moved to state s at time-step t+1. Once the the optimization
problem of Eq. (13) is solved, the agent moves to its new
state ŝt+1, where the actual target measurements Φj

t+1,∀j
are received, and subsequently the posterior distribution on
the target states is computed with Eq. (9b) as explained
earlier. We should mention here that the UAV obstacle
avoidance is handled by making sure that the agent’s next
state does not reside within the convex-hull of any obstacle
i.e., st+1 /∈ ξn,∀n ∈ [1, .., |Ξ|]. To achieve this we follow the
procedure discussed in Sec. III-D, where all candidate agent
states s ∈ St+1 which result in a collision are removed from
the set St+1 before solving Eq. (13).

VI. EVALUATION

A. Simulation Setup

To evaluate the proposed approach we have used the
following simulation setup. The surveillance area E ⊂ R3

is given by a cube with a total volume of 1km3. The target
dynamics are given by Eq. (1) with ∆t = 1s, ε = 0.2,
and m = 1300kg, and are the same for all M = 4
targets. The process noise νt is distributed according to
νt ∼ N (0, Q), with Q = diag([30 30 eps 3 3 eps]),
where eps is a very small number i.e., eps = 1E − 10,
which indicates our knowledge that the targets evolve on the
ground plane. Initially it is assumed that the four targets are
distributed according to x1

0 ∼ N (µ1
0,Σ0), x2

0 ∼ N (µ2
0,Σ0),

x3
0 ∼ N (µ3

0,Σ0), and x4
0 ∼ N (µ4

0,Σ0), where µ1
0 =

[281, 925, 0]m, µ2
0 = [238, 706, 0]m, µ3

0 = [901, 925, 0]m,
and µ4

0 = [885, 676, 0]m. The covariance matrix Σ0 is given
by Σ0 = diag([200 200 eps 20 20 eps]) for all targets.

The control input ut is bounded in the x, and y dimensions
inside the interval [−6000, 6000]N for all targets, and in the
z dimension is zero. The targets can reach a ground speed
of up to 16m/s. The agent dynamics are given by Eq. (3)
with ∆r = 5m, Nθ = 15, Nr = 4, and h = 40m. In
addition, the measurement noise wt is distributed according

to wt ∼ N (0, σ2
ϕ), with σϕ = 1deg, and the target detection

probability is set to pD = 0.95. The false-alarms are
uniformly distributed inside the measurement space (−π, π],
and arrive with a Poisson rate Λ = 1. Finally, we note that the
stochastic filtering recursion in Eq. (9) has been implemented
as a particle filter [30] mainly for handling the non-linear
measurement model i.e., Eq. (4), and the guidance problem
i.e., Problem (P1), was solved with the Gurobi’s MIQP solver
[31].

B. Performance Evaluation

In the first part of the evaluation we illustrate in Fig. 1
the target trajectory hypothesis generation as discussed in
Sec. IV. Specifically, Fig. 1(a) shows in 3D and top-down
views, the initial position of targets x1, x2, x3, and x4

which are marked with a red, blue, purple and green ⋆
respectively. The initial covariance of the target states is
drawn as an error-ellipse around the mean of the target
location as shown. The obstacles in the environment are
shown as gray colored cuboids, and the goal region, which
in this scenario is the same for all targets, is shown with
the red rectangular region in Fig. 1(a). The UAV agent
is initialized in this example at s0 = [150, 200, 40]m, as
shown with the black ⋄. Figure 1(b) shows the output of the
proposed guidance controller as depicted in Problem (P1),
which has generated the hypothetical planned trajectories
for the 4 targets over a planning horizon T = 50 time-
steps. Specifically, the guidance controller which runs on
the UAV agent has been initialized at t = 1 with the initial
probability distributions on the target states N (µj

0,Σ0),∀j,
and using the formulation shown in Eq. (8b)-(8f) computed
the control inputs U j

1 = {uj
1+τ |1},∀τ = [0, .., T − 1], for

all targets j which minimize the cost function in Eq. (7)
with the parameter ρ set to ρ = 0.01. As shown in the
figure, this optimization allows the targets to avoid the
obstacles in the environment, and based on their mobility
capabilities to reach the goal region as soon as possible. As
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Fig. 2. (a)(b) The figure shows the optimized trajectory of the UAV
agent which maximizes the target monitoring performance, (c) the average
positional RMSE obtained during 100 Monte-Carlo trials.

discussed in Sec. V this optimization is repeated at each
time-step t in a rolling horizon fashion after incorporating
the target measurements which are used to compute the
posterior distribution of the target states. Fig. 1(c) shows the
uncertainty on the targets’ states over the planning horizon
as computed at time-step t = 1, with the Eq. (6). In
particular, the figure shows the target position as particles
sampled from N (µj

1+τ+1|1,Σ
j
1+τ+1|1),∀τ,∀j. Finally, Fig.

1(d), shows the optimal control inputs (x and y dimensions)
over the planning horizon that guide the targets to the goal
region, while producing smooth trajectories without abrupt
changes in the speed and direction.

Next we demonstrate the performance of the proposed
approach for the task of passively monitoring the four
ground targets. In order to evaluate the proposed approach
we first assume that the targets move along the noise-free
path generated by the guidance controller over the planning
horizon of T = 50 time-steps, as shown in Fig. 1(b). On
the other hand, the UAV agent only observes a noisy version
of the target states as indicated by Eq. (1). Therefore, the
objective now becomes the selection of the optimal UAV
control inputs at each time-step such that the collective
uncertainty on the target states is minimized. To achieve
this, the UAV agent makes a prediction on the target next
states as discussed in Sec. IV, and then uses the received
target measurements to update those predictions using the
filtering procedure discussed in Sec. V. Figure 2(a)(b) show
the result of the optimization problem in Eq. (13) i.e., the
UAV’s optimal trajectory which maximizes the monitoring
performance i.e., minimizes the uncertainty on the target
states. Essentially, the UAV agent seeks at each time-step
to select its next state from which will obtain the most
informative bearing measurement, and which in turn will
allow the estimation of the target state. We define the root
mean square error (RMSE) on the target position at time-

step t as ϵt =
√

N−1
∑N

n=1 ||x̂
pos
t (n)− xpos

t ||22, where ||.||22
is the squared 2-norm, N is the number of Monte-Carlo
trials, x̂pos

t (n) denotes the estimated (x, y) target coordinates
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Fig. 3. The figure illustrates the effectiveness of various UAV manoeuvre
types on the target monitoring performance.

at time-step t on the nth trial, and xpos
t is the true target

position at the same time-step. Figure 2(c) shows the average
positional RMSE obtained for tracking the four targets during
the scenario depicted in Fig. 2(a)(b). This scenario was
simulated for N = 100 trials, where in each trial the
UAV initial position was randomly initialized inside the
surveillance area. This result is then compared with the
positional error obtained from a 3-sensor tracking system.
Specifically, we assume that three fixed direction-finding
sensors located at [150, 200]m, [800, 200]m, and [500, 900]m,
receive three bearing measurements from each target at
each time-step, and localize the targets according to the
procedure discussed in Sec. V by combining their individual
measurement likelihood functions. The measurement noise
profile in this case is as discussed in Sec. VI-A, however
without false-alarms. As shown in the graph, although the
3-sensor system achieves better results (note that in this
case the target state is fully observable), the proposed single
sensor system by optimizing the measurement collection
process, achieves comparable performance (i.e., solid black
line) despite the presence of false-alarms. Finally, the black
dotted-line shows what is the achievable performance of the
proposed approach in scenarios with higher false-alarm rates
i.e., Λ = 8. Although, the rate of false-alarms degrades the
overall monitoring performance as shown in the figure, the
targets can still be tracked with a reasonable accuracy, which
can be adequate for certain application domains.

Finally, we consider the scenario where the UAV agent is
not allowed to move freely inside the surveillance area, rather
it can only operate inside a specific sub-region which allows
certain mission objectives to be achieved e.g., to remain
undetected from enemy radar systems, while passively mon-
itoring the opposing forces activities. In such scenarios the



control optimization procedure discussed in Sec. V i.e., Eq.
(13), cannot be applied directly due to the aforementioned
mission constraints. For this reason, we investigate various
types of pre-computed manoeuvres which the UAV agent
can utilize in order to maximize the monitoring performance,
while operating within the allowed area boundaries. This is
shown in Fig. 3(a)-(d), where we investigate the target mon-
itoring performance during 4 different types of manoeuvres
i.e., Zig-Zag, Square, Pentagon, and Circular as shown in
Fig. 3(a), Fig. 3(b), Fig. 3(c), and Fig. 3(d), respectively.
In this scenario we assume that the UAV agent is only
allowed to operate within the sub-region under the orange
dotted line. The average positional RMSE at each time-step
is shown in Fig. 3(e) for the four manoeuvres types. This
result, was obtained with a Monte-Carlo simulation, where
the UAV initial position is randomly sampled inside the
allowed operating area 100 times, and then the designated
manoeuvre type is executed. The results indicate that the
circular manoeuvre outperforms the rest, as the higher degree
of manoeuvrability that it offers allows the UAV agent to
collect more informative bearing measurements from the
targets. As a comparison, we also show in Fig. 3(e), labelled
“Optimized”, the achievable performance obtained when the
agent is allowed to move freely inside the surveillance
environment guided by the control optimization approach
shown in Eq. (13).

VII. CONCLUSION

In this work we propose a joint estimation and control
approach for passively monitoring multiple targets of interest
in challenging conditions (i.e., environments with obstacles,
and false-alarm measurements) with a single UAV agent
equipped with a direction-finding sensor. Model predictive
control is used for generating hypothetical target trajectories
inside a rolling finite planning horizon, which are then
refined through stochastic filtering. In particular, we show
how the agent’s path can be optimized in order to minimize
the collective uncertainty over the target states. Finally, we
analyze the performance of various types of pre-computed
manoeuvres, which can be utilized in missions with con-
straints on the agent’s movements.
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