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A Novel Low-Power Embedded Object Recognition System Working
at Multi-Frames per Second
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One very important challenge in the field of multimedia is the implementation of fast and detailed Object
Detection and Recognition systems. In particular, in the current state-of-the-art mobile multimedia systems,
it is highly desirable to detect and locate certain objects within a video frame in real time. Although a signifi-
cant number of Object Detection and Recognition schemes have been developed and implemented, triggering
very accurate results, the vast majority of them cannot be applied in state-of-the-art mobile multimedia de-
vices; this is mainly due to the fact that they are highly complex schemes that require a significant amount
of processing power, while they are also time consuming and very power hungry. In this article, we present a
novel FPGA-based embedded implementation of a very efficient object recognition algorithm called Receptive
Field Cooccurrence Histograms Algorithm (RFCH). Our main focus was to increase its performance so as to
be able to handle the object recognition task of today’s highly sophisticated embedded multimedia systems
while keeping its energy consumption at very low levels. Our low-power embedded reconfigurable system is
at least 15 times faster than the software implementation on a low-voltage high-end CPU, while consuming
at least 60 times less energy. Our novel system is also 88 times more energy efficient than the recently
introduced low-power multi-core Intel devices which are optimized for embedded systems. This is, to the best
of our knowledge, the first system presented that can execute the complete complex object recognition task
at a multi frame per second rate while consuming minimal amounts of energy, making it an ideal candidate
for future embedded multimedia systems.
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1. INTRODUCTION

Multimedia is a technology which has been enjoying considerable attention for many
years. Multimedia involves the use of multiple forms of media such as audio, images
and video in an integrated manner. A computer user interacts in a daily basis with
a huge amount of multimedia data mostly through the internet. Multimedia usually
carries useful but raw and unsorted information. It is an emerging need for the user
to be able to search in a content base through multimedia content such as images
and video. For this reason object recognition gives today multimedia applications new
potentials that enable the previously poorly sorted media data to be classified and
unified with the rest of today information.

In the Content-based image retrieval applications we try to find all images in a larger
set of images which have a specific content. The content can be specified for example
in terms of similarity relative a target image (e.g., find all images similar to image X
or find all images showing the specific object depicted in image X).

Google recently introduced image search based on content as well as the Google’s
Goggles android application which enables the user to search real world objects by
taking a picture. In a desktop environment already Apple’s iPhoto and Google’s Picasa
featuring face detection and recognition technology in order to classify user’s photos
according to the persons depicted in the photo.

By extending the above object recognition approaches we are also now able to search
objects or persons in large video streams; this is called Content based Video Retrieval
and it is a very important application for numerous future multimedia systems. This
problem can also be defined as a generalized Video Mining problem where we are trying
to discover patterns and objects, in an unsupervised way, within video streams. In such
video streams the amount of data that has to be analyzed can be tremendous; this is
the case for example for YouTube or for all the TV broadcast networks. In general, the
classification of thousands of video hours is impossible to be done in a supervised way
and even in an unsupervised way the processing time is a crucial factor. Moreover, such
a classification is also needed in state-of-the-art mobile multimedia systems which can
display and store several Gigabytes of high-quality video; in such systems low energy
consumption is also crucial.

Moving to the game industry we recently met alternative input systems based around
a webcam-style peripheral such as the Microsoft Kinect [XBOX].1 Kinect enables users,
by recognizing their gestures (i.e., performing certain object recognition tasks), to con-
trol and interact with the Xbox 360 game console without the need to touch a game
controller. Such gesture recognition systems are also being introduced in different
embedded multimedia systems including interactive shop windows, portable game
consoles and smart TVs.

The critical factors in all those discrete yet interrelated applications are the accuracy
of the system and well as its response time. Moreover, since in many cases those object
recognition systems are utilized in mobile environments the energy consumption is also
a critical issue. The object recognition problem itself is a complex and computational
intensive task for today microprocessors no matter if they are power-hungry desktop
CPUs or low-power embedded ones. This complexity further increases since totally or
slightly different objects can appear anywhere in the image (in different light condi-
tions) and the system should also report where those objects are (i.e., localize them).
As a result, even when executed on high-end mobile CPUs, such applications cannot
be performed at multi-frame per second rates, whereas when optimized for speed they
typically give only target specific responses (i.e., a car found in coordinates x,y) .

1http://www.xbox.com/kinect.
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This article presents a complete generalized object detection system implemented
on a reconfigurable device that can execute a very efficient such algorithm at a rate of
more than one frame per second while consuming about 60 times less energy than a
low-power CPU executing the exact same algorithm.

We clearly demonstrate that such a complex task can, probably for the first time,
be addressed by a single chip solution running on minimal power; this is achieved by
exploiting the heterogeneity of custom hardware and a low power embedded CPU. We
present such a single chip prototype in this article while our ideal target single-chip
platform is the already announced by Xilinx2 Zynq-7000 single chip device featuring a
dual-core ARM CPU and FPGA reconfigurable logic in the same silicon.

Moreover, due to the programmability features of the FPGAs, the system can support
the requested object recognition tasks only when needed; based on the multimedia
applications’ requirements, at any given time, this same FPGA can also perform other
similar tasks that are executed efficiently on reconfigurable devices such as 3D image
reconstruction [Hadjitheophanous et al. 2010] or face detection [Gao and Lu 2008] also
met in various embedded multimedia applications.

2. RELATED WORK

2.1. Frequency Assignment

Even though no complete low-power multi-frame per second object recognition system
exists, there are several FPGA-based systems implementing certain face recognition
algorithms as well as some hardware systems executing specific sub-parts of the object
recognition algorithms that are related, in a certain manner, to our work.

Gao and Lu [2008] the authors present a novel approach, utilizing a state-of-the-art
FPGA, so as to accelerate the Haar-classifier face detection algorithm. By utilizing a
large number of parallel arithmetic units in the FPGA they achieved real-time perfor-
mance, with very high detection rates and very low false positives. Their implementa-
tion is tailored to a HiTech Global PCIe card that contains a Xilinx XC5VLX110T FPGA
device. Moreover in Kyrkou and Theocharide [2011] another Haar-based face detection
scheme is described which outperforms all the existing such schemes implemented
in FPGAs. However, all those systems are optimized for face-detection and cannot be
efficiently applied to general object-recognition.

He and Yuan [2008] proposed a novel self-adaptive Canny edge detection scheme
while they also present an FPGA implementation optimized for mobile robotic sys-
tems. Their system utilizes an Altera Cyclone EP1C60240C8 and can detect the edges
of a certain, pre-defined, object on a grey-scale image at an analysis of 360x280 in
2.5ms (or in other words at a speed of 400 frames per second). Gentsos et al. [2010]
present another implementation of the Canny edge detector that processes 4-pixels
in parallel; this approach increases the throughput of the design without increasing
the required on-chip cache memories. By increasing the parallelism of their scheme,
their system can process high resolution images (up to 1.2Mpixels) in 3.09ms (i.e., at
about 300 frames per second) when their scheme is implemented on a Xilinx Spartan-6
FPGA clocked at 200MHz. However, their system implements only the edge detec-
tion task while the rest of the object recognition process is not supported or even
discussed.

In Bhowmik et al. [2006] a hardware implementation of an object classification sys-
tem based on moment invariants and Kohonen neural networks is presented capable to
classify objects in realtime. The authors implemented the classification phase in hard-
ware while leaving the training of the Kohonen network into software; in particular the

2Xilinx,DS190,Zynq-7000 Extensible Processing Platform Overiew.
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computation of the moment invariants has been implemented in hardware along with
a set of sixteen parallel Kohonen neurons for the classification of an unknown object,
demonstrating a possible real-time solution for object classification; unfortunately no
specific performance numbers are given.

Nair et al. [2005] present an FPGA-Based People Detection System. They use
JPEG-compressed frames from a network camera which after pre-processing (i.e.,
feature extraction), are sent to a machine-learning detector, implemented on a
Virtex-II 2V1000; the FPGA executes the actual detection process. The system
is demonstrated on an automated video surveillance application detecting people
accurately at a rate of about 2.5 frames per second when clocked at 75 MHz.

Goshorn et al. [2010] present an object detection system that can detect a single
object at a rate of 266 frames per second. However, they did not present any data
about its accuracy and since they use a very poor correlation method based on the
sum of absolute differences (SAD), the accuracy of their system is heavily questioned;
moreover, their device can detect only a pre-defined single object in a single scene while
they only roughly localize it (i.e., localize only the center of the object and they do not
report any bounding box).

Finall, Shotton et al. [2011] the authors propose a new method to predict 3D positions
of body joints from a single depth image at up to 200fps on consumer hardware. However
they use a depth camera such as Microsoft Kinect, which consists of an infrared laser
projector combined with a monochrome CMOS sensor. They also do not generalize their
method to other object detection tasks that may be useful in multimedia systems.

When compared with all these existing systems, our approach has certain significant
advantages such as the following.

(1) It is the only one supporting the complete general, multi-object recognition and
localization task at more than one frame per second.

(2) This is, to the best of our knowledge, the only embedded system that has been
specifically designed so as, not only to be real-time, but also to consume as less
energy as possible, in order to address the needs of today’s embedded multimedia
devices.

(3) It is the only system that can work simultaneously on multiple features (i.e., 7
features) which significantly increase the robustness of the system while still sup-
porting a multi frame per second rate in real-world environments.

(4) Even when compared with the different face detection systems, it is the only one
performing efficiently in hardware the on-line training phase utilizing only a single
training sample per object; the Haar-based systems need hundreds of training
samples per object and thus they do the training off-line which severally limits
their efficiency.

(5) The algorithm utilized is probably one of the most accurate generalized object
recognition algorithms presented so far as described in Ekvall and Kragic [2005].

Based on the above, we believe that this is the first system addressing all the needs
of the real-time embedded multimedia devices, recently introduced, that involve com-
plex object recognition tasks. The rest of the article is organized as follows: Section 3
presents the algorithm that has been implemented while Section 4 demonstrates how
we ended up with the optimal hardware/software partioning for our final embedded
system. Section 5 presents, in detail, the high-level as well as the micro-architecture
of the system while it also highlights how the complete embedded device has been
verified. In Section 6 we reveal the silicon cost of the embedded system whereas in
Section 7 we demonstrate the real-world performance results of the end-device. Finally,
Section 8 discusses the limitations of the current system as well as some direction for
future work and Section 9 concludes our article.
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Fig. 1. High level view of algorithm.

3. RECEPTIVE FIELD COOCCURRENCE HISTOGRAM FOR OBJECT DETECTION

A Receptive Field Histogram is a statistical representation of the occurrence of several
descriptor responses within an image. Examples of such image descriptors are color
intensity, gradient magnitude and Laplace response. If only color descriptors are taken
into account, the histograms produced are called regular color histograms.

A Receptive Field Cooccurrence Histogram (RFCH) is able to capture most of the
geometric properties of an object. Instead of just counting the descriptor responses
for each pixel, the histogram is built from pairs of descriptor responses. The pixel
pairs can be constrained based on, for example, their relative distance. In this way
only pixel pairs located within a maximum certain distance, dmax, are considered.
Thus, the histogram represents not only how common a certain descriptor response
is in the image but also how often certain combinations of descriptor responses occur
close to each other. In other words, an RFCH is a representation of how often pairs of
certain filter responses and colors lie close to each other in the image. This results in
a representation of the image in which most of the geometric information is preserved
thus allowing for more accurate object recognition. Figure 1 presents the concept of
the cooccurrence histogram, of a 3bit (8-color) greyscale image, where we search for
cooccurrences from left to right with dmax = 1.

3.1. Receptive Field Cooccurrence Histogram for Object Detection

One of the main advantages of this algorithm is that it can work with numerous
different types of image descriptors such as Color, Gradient magnitude, Laplacian,
Gabor as well as any mixture of them. As it is has been proved in Ekvall and Kragic
[2005] for object recognition the optimal choice is to utilize rotationally invariant image
descriptors such as Color, Gradient magnitude and Laplacian descriptors and the actual
choice can depend, among others, on the image characteristics.

3.2. Image Quantization

When utilizing histograms in the recognition process, the computational complexity
of the algorithm increases exponentially with the dimensions of the histogram. In
order to alleviate this problem the algorithm firstly clusters the input data, so as
to reduce the histogram dimensions. Hence, by altering the number of clusters the
histogram size may be controlled. The cluster centers (N) have a dimensionality equal
to the number of image descriptors used. The adopted algorithm is using the K-Means
clustering algorithm [MacQueen 1967] for the dimension reduction. In particular, after
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quantization, each object ends up with its own cluster scheme which is used together
with the RFCH which has been calculated on the quantized training image. When
searching for a certain object in a scene, the whole image is quantized with the cluster
scheme that has been applied in the quantization of this search object.

3.3. RFCH-Based Object Detection

After the clustering step, the algorithm creates the object’s cooccurrence histograms in
the clustered descriptor space. In the testing phase the image is scanned using a small
search window and the RFCH of the window is calculated at any given instance. In
each scan the RFCH of the window is compared with the object’s RFCH.

The similarity between two normalized RFCHs is computed as the histogram
intersection:

μ(h1, h2) =
N2∑

n=1

min (h1[n], h2[n]),

where hi[n] denotes the frequency of receptive field combinations in each discrete inter-
val (bin) n for image i, when quantized into N cluster centers. The higher the value of
the μ(h1, h2) the better the match between the histograms, and as a result, the better
the match between the search object and this specific part of the image.

As a summary the algorithm works in two phases and performs the following steps
in order to detect a certain object in an image:

Training Phase:

—Extract Features from the Object
—Calculate Feature Clusters
—Quantize Object
—Create object’s RFCH

Detection Phase:

—Quantize image with Object’s cluster scheme
—Calculate the RFCH for a small image window (for all possible image windows)
—Match Object and Image RFCH with histogram intersection (for all windows)
—Report the best match

4. HARDWARE/SOFTWARE PARTIONING

In order to create an efficient embedded system, we first analyzed the RFCH application
so as to be able to perform the optimal hardware software partioning. In order to profile
the software implementation of the algorithm we have used Intel’s VTune3 Amplifier
XE 2011. The profiling was performed on an Intel SU7300 Dual Core ULV CPU working
at 1.3GHz since this is a low-power CPU found in embedded multimedia systems (e.g.,
MSI WindBox)4. The same profiling results were also produced when executing the
same code on an ARM placed in a Gumstix device5 [GUMSTIX]. All of our experiments
were conducted using the original optimized software provided by the inventors of the
underlying algorithm [Ekvall et al. 2005] along with images from the most widely used
Image Database, the CVAP6 Object Detection Image Database, which we have rescaled
to 640 × 480.

3Intel VTune, Ampiler XE Documentation.
4MSI WindBox III (MS-9A35) Core2Duo Fanless Embedded System.
5http://www.gumstix.com/.
6CVAP Object Detection Image Database, http:/www.nada.kth.se/ekvall/codid.html.
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After running various tests combining different scenes and objects we concluded
that, functions CalculateClusters(), ClusterFeatures() and CalculateRFCH() are tak-
ing 97.8% in average (and at least 96%) of the total execution time. By making the above
3 functions faster, we can significantly improve the performance of the overall algo-
rithm; according to Amdahl’s Law the maximum theoretical speedup in that case is
45x. We have also analyzed the interconnection needed if those functions are imple-
mented in hardware and the rest of the functions for Feature Extraction (i.e., Create
Image Gauss, Create BW Image etc) and Histogram Intersection (i.e., MatchRFCHs)
are executed in the CPU and found it to be minimal as described in the next section.
In particular, even though CalculateRFCH takes only 8% of the total time we imple-
mented it in hardware so as to minimize the data transactions between our hardware
modules and the embedded CPU.

Another important reason for implementing the Feature Extraction as well as the
Histogram Intersection Algorithms in software is that it allows us to easily change
those parts of the algorithm depending on the image characteristics (e.g., change the
actual descriptor used) thus heavily increasing the applicability as well as the accuracy
of the end system. Before we have actually implemented those functions in hardware,
and in order to be able to fully dimension the problem, we have also measured the
computational complexity of those 3 functions.

CalculateClusters. This function implements an iterative version of the K-Means
algorithm, and it has been identified as the major hot-spot during the profiling proce-
dure. The computational complexity of the above algorithm is O(nfNT) where n is the
number of samples, f is the number of features, N is the number of clusters and T is
the number of iterations until convergence.

ClusterFeatures. This function is responsible for the quantization of the image accord-
ing to the pre-calculated cluster centers. The function has a complexity of O(nfN). The
function takes as input the Feature Array and the Cluster Point Array and produces
the Binned Image Array.

CalculateRFCH. The complexity of this function is approximately O(nd2), where n
is the Image Size and d is the maximum distance (dmax).

5. SYSTEM ARCHITECTURE

Moving to the implementation of the previously identified hot-spots of the presented
scheme, we have decided to use a Xilinx Virtex-6 FPGA, which resides on the ML605
Xilinx Evaluation Board7 [UG534]. Those designs have been implemented manually
in VHDL and we have synthesized, mapped, placed and routed them using Xilinx ISE
13.3.

The main concept of our approach is that the three HW accelerated functions are
placed one next to the other in such a way so as to minimize the data being sent from and
to the CPU executing the rest of the functions in software. By adopting this approach
we don’t need to have 3 independent data transactions to the reconfigurable fabric
which will trigger a significant communication overhead. In the proposed architecture,
demonstrated in Figure 2 we transfer data from the CPU to the FPGA practically
only when loading the Feature memory; then our hardware modules process those
data until the complete image slice is fully processed. The loading time for the feature
memory is very low and up to about 0.05msec for the 640 × 480 images (for a typical
100MHz bus as in [PCI BUS]8) while the software processing does not need more
than 1msec at any experiment conducted. Moreover, as it is demonstrated in the next
section, we have utilized a double buffering scheme in order to pipeline the loading

7Xilinx, UG534 ML605 Hardware User Guide.
8Datasheet PCI Bus Bridge Memory Controller, 100 MHZ
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Fig. 2. High level architecture.

Fig. 3. Calculate Cluster HW implementation.

and software processing time of the different slices of every image with the actual
hardware processing of them. The write back time is negligible as the only thing we
need to transfer is the RFCH result which is a 80x80x11 bits datum and this is only
needed once for each complete image. 5.1 also demonstrates the data flow through the
implemented modules.

5.1. Calculate Clusters Module

The CalculateClusters function is responsible for the clustering of the features array,
and it mainly implements an iterative version of the K-Means algorithm. It is applied
during the training phase of the algorithm and it works in 3 distinct phases: Phase 1
and 2 perform the actual calculations while phase 3 updates the cluster centers. The
overall micro-architecture of this module is demonstrated in Figure 3. Processing Unit
A (PUA) is calculating the cluster centers and it utilizes 16 cores. Each core can perform
the necessary processing on a small image slice of size 640 × 2 (which consists actually
of 2 lines of the feature image). The whole feature image (640 × 480 × 7 features-8bit)

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 1s, Article 33, Publication date: March 2013.



A Low-Power Embedded Object Recognition System Working at Multi-Frames per Second 33:9

Fig. 4. Feature Array decomposition.

is pre-segmented by the software and it is sent in slices (i.e., 32 lines per processing
cycle) to the hardware module. As a result the Feature Array/Memory utilized in each
core is 640 × 2 × 7 bytes, and with the proposed configuration, each module can process
16 feature image blocks (640 × 2 × 7) simultaneously. In each processing core we have
to execute a critical multiply-and-accumulate (MAC) operation; in order to speed up
this function we have utilized a pipelined Digital Signal Processor (DSP) built-in core,
found in those Xilinx Virtex6 devices.

When the processing is completed, Processing Unit B (PUB) sums all the intermedi-
ate results produced by the 16 cores. When the sum is fully calculated, PUB triggers
Processing Unit C which is responsible for updating the cluster centers as well as the
clusterPoint array; the latter is also split into 16 slices. The clusterPoint array holds the
calculated clusters information needed for the clusterFeatures module as it is described
in the next paragraph.

5.2. Cluster Features Module

This module implements the image quantization task and it also utilizes 16 parallel
cores. The inputs of this module are a) the feature array and b) the clusterPoint array
calculated from the CalculateClusters module. Concerning how the data are decom-
posed and processed in parallel the exact same technique with the one described in the
last section is applied.

In particular, we used images of sizes 640 × 480 and utilized 7 distinct features. This
means that our feature array is equal to 640 × 480 × 7(×8bits) = 2.15 Mbytes which
cannot fit in the on-chip RAM. In order to be able to load the feature array on-chip,
while also processing a sub-part of it, we have split it in 15 slices; in this way we load
a certain slice to the FPGA while simultaneously we process the previous slide. Those
15 slices are of size 2.15/15 = 0.13 MB each. In that way in order to process the whole
feature array, we have to process 15 slices.

Then we split further the on-chip slice into 16 blocks with size (640 × 480 × 7)/240
= 8.75 KB each and then we pass each block to a distinct processing core (i.e we utilize
all 16 parallel processing cores in order to process one slice). The above procedure is
depicted in Figure 4.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 1s, Article 33, Publication date: March 2013.
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Fig. 5. Cluster Features module.

The high level architecture of the cluster feature module is demonstrated in Figure 5.
Each slice of the feature image array (640 × 32 × 7) is fitted in 16 distinct feature
Memories (RAMs). Each Feature RAM can hold a block equal to 640 × 2 × 7 (using
8-bit color). The clusterPoint array of size 7 x 80 is initially loaded into the 16 distinct
clusterPoint RAMs each of size 7 × 80 × 8 bits. The actual processing comprises of
each core quantizing an image block of 640 × 2 pixels (i.e., 2 lines) as follows: The first
core quantizes the image pixels 0 to 1279, the second core quantize the pixels 1280 to
2559 and so on. Again we process each image block simultaneously thus fully utilizing
the 16 distinct processing cores. Each core also has a dedicated BRAM for storing the
results. This BRAM is the binnedImage memory with a total size of 640 × 2 × 8 bits.
Each core performs the same MAC operation, as in the CalculateClusters case, so we
also utilize here a fully pipelined built-in DSP core; in total we need 16 DSP slices to
support this module.

When all the cores have completed the corresponding processing, an image slice has
been fully quantized and the results reside in the 16 binnedImage RAMs. The control
unit for the ClusterFeatures module is quite simple. It just monitors when all the cores
have finished their processing and then it loads the next block.

5.3. Calculate RFCH Module

This module calculates the required receptive fields’ cooccurrence histograms. The
overall architecture of the module is presented in Figure 6. The module utilizes 8
processing cores as it is less demanding, in terms of processing time, than the other
two modules.

The RFCH is calculated based on the BinnedImage data. The binnedImage array is
of size 640 × 480 and, as we presented in the last section, it is the quantized version
of the image. In order to calculate the RFCH for each binnedImage slice of size 640
× 32 we need to process the data coming from two continuous blocks; the additional
block/slice is needed since we need 4 extra lines in order to serve the dmax = 4 condition
(i.e., each core should look up to 4 lines ahead thus utilizing the data of the next slice).
The last block of the current slice is paired with the first block of the next slice in order
to keep the dmax condition valid between image slices. The above procedure is shown
in the Figure 7.

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 1s, Article 33, Publication date: March 2013.
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Fig. 6. Calculate RFCH module organization.

Fig. 7. Binned Image Array Decomposition.
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Each of the eight cores calculates the cooccurrences of a binnedImage block of size
640 × 4. This means that the 8 cores together can calculate the cooccurrences of a
binnedImage slice equal to 640 × 32. As previously mentioned, in the current version of
the system, the cooccurrenses are calculated based on a specific value of dmax (dmax =
4) which gives very high accuracy as described in Ekvall and Kragic [2005]. If, for any
reason, we decide to use a larger value for dmax, we will have to utilize more memory
since the RAM blocks needed, in the presented architecture, are equal to 2dmax. Each
processing core maintains a dedicated memory block for its output in which a partial
RFCH is stored; the required memory size is 80 × 80 × 11 bits. In order to calculate the
RFCH of the whole binnedImage of size 640 × 480 we have to process 15 binnedImage
slices of 640 × 32 each and update the corresponding memories. After we process all
the slices we store the results in the corresponding 8 RFCH memories; then those
stored results are summed in order to form the final RFCH for the image and this is
the end-result sent to the CPU for further processing.

The control of this module is quite complicated since it contains various termination
criteria and jump conditions involved in the cooccurrence histogram computation. In
particular it is implemented as a 14-state Finite State Machine and it has been fine-
tuned in order to achieve the maximum possible clock rate.

5.4. Verification of the Complete System

In order to verify the correct functionality of our approach and mainly the feasibility
of our complete system being implemented in a single chip, we integrated all the
hardware modules as well as the software code in an embedded design platform based
on a Virtex 6 FPGA board9 . For this proof of concept we have selected the on-chip
Xilinx Microblaze10 softcore processor for the software execution, connected to the
AXI / AMBA bus. We used the AXI Block Ram Controller provided by the Xilinx
EDK 13.3 environment to make all the necessary data transfers between the CPU
and the reconfigurable modules. The controller occupies the first port of a dual port
configuration RAM leaving the second port to run on the custom-made hardware side
at a different clock domain (i.e the Frequency of the Microblaze CPU was fixed at
150 MHZ while our custom hardware works at 350MHz).

We also used the AXI IP Interface modules (IPIF) to utilize user specific software
accessible registers. In that way we were able to control and monitor the status of our
custom accelerator from the software side. In this particular platform a soft core CPU
was the only choice as the Virtex 6 family is not equipped with any hard core CPUs
(like the ARM found in the already announced Virtex-7 FPGA under the codename
Zynq-700011 [DS190]). Unfortunately the Microblaze is performing poorly when im-
plementing the software functions and as a result it degrades the overall performance
of the system (to an overall speedup when compared with the reference Intel CPU, of
about 3.5x); thus we used it only for verification and feasibility purposes. We also used
the compact flash peripheral in order to load the test images and verify the results.
Figure 8 shows an overview of the proof-of-concept embedded platform.

The Microblaze talks to an external DDR SDRAM in which we place images from
a well known image database [CVAP]12 as well as real-world multimedia data (i.e.,
real-world videos). The Microblaze executes the part of the RFCH algorithm that we
mapped to the CPU, when performing the hardware/software partioning, while it ad-
ditionally controls all the system’s peripherals. In this initial single-chip approach the

9Xilinx, UG534 ML605 Hardware User Guide.
10UG081 Microblaze processor reference guide.
11Xilinx, DS190, Zynq-7000 Extensible Processing Platform Overview.
12CVAP Object Detection Image Database, http://www.nada.kth.se/ekvall/codid.html.
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Fig. 8. Micro-Architecture of our proof of concept single-chip approach.

Table I. Hardware Cost on a Virtex-6 VLX75T device (16 Cores C.Clusters and
Cluster Features, 8 cores for Calculate RFCH)

Module Slice Registers Slice LUT Block RAM DSP Slices
Calculate 26,082/93,120 23,691/46560 112/312 17/288
Clusters 28% 50% 35% 5%
Cluster 4,176/93,120 5,840/46,560 112/312 16/288
Features 4% 12% 35% 5%
Calculate 1,066/93,120 3,465/46,560 16/312 0/288
RFCH 1% 7% 5% 0%
Total 31,324/93,120 32,996/46,560 240/312 33/288

33% 70% 76% 11%

functions that were implemented in hardware have been called by the corresponding
software drivers independently (i.e., 3 different calls, one for each hardware module)
since that allowed for much faster and easier debugging of the hardware cores. The
RFCH controller is the hardware module supervising the interconnection between the
Microblaze and the RFCH hardware accelerator, and it is attached as an AXI slave IPIF
module. This module is basically an AXI4lite slave13 which provides a bi-directional
control/status interface between the RFCH hardware accelerator and the AXI bus. Af-
ter executing the complete algorithm in the specified FPGA platform we compared the
end results residing in the DRAM with those triggered by the pure software solutions
and they were identical.

It should also be stressed that in numerous current embedded devices the image
size is 640 × 480. As a result our prototype hardware implementation, as well as the
performance results of the next sections, are all based on that image size. However, our
system can seamlessly (i.e., with a simple change in a couple of control modules) process
any images up to 1920 × 1080 (High Definition-HD) pixels; and this is an analysis that
will soon been incorporated even in mobile embedded multimedia systems. The only
difference will be that those HD images will consist of more slices and therefore more
time will be needed in order to process a complete such image.

13Xilinx, DS768AXI Interconnect.
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Table II. Hardware Cost on a Virtex-6 VLX130T device (32 Cores C.Clusters and
Cluster Features, 8 cores for Calculate RFCH)

Module Slice Registers Slice LUT Block RAM DSP Slices
Calculate 5,4642/160,000 48,121/80,000 112/528 32/480
Clusters 34% 60% 21% 6%
Cluster 8,769/160,000 11,986/80,000 112/528 32/480
Features 5% 15% 21% 6%
Calculate 1,066/160,000 3,465/80,000 16/528 0/480
RFCH 1% 4% 3% (0%)
Total 64,477/160,000 63,572/80,000 240/528 64/480

40% 79% 45% 13%

6. HARDWARE IMPLEMENTATION

The Table I shows the utilization of each function on both a Virtex-6 VLX75T and a
Virtex-6 VLX130T device. The total utilization of the three functions leaves room for
more cores to be implemented in both devices if needed.

As demonstrated in Table I by using small image slices (as described in Section 5)
we minimized the RAM usage while exploiting high levels of parallelization. The small
footprint of our design, in terms of Slice LUTs, is giving as the choice to double the
cores in the current design and assign 1 image line per core with neither increasing
the amount of utilized Block RAMs nor the control complexity. The utilization for this
system is demonstrated in Table II. This approach almost doubles the performance of
our system, as the next section clearly demonstrates, while making the LUT-to-BRAM
factor very close to the LUT-to-BRAM factor of the available resources in the middle
Virtex-6 FPGAs.

Since our system can process different images totally independently of one another,
by adding more memory and logic resources we will trigger a further speedup and we
expect that the performance will scale linearly with the device utilization. In order to
further support this case we have placed two instances of the system described in the
last paragraph to a Virtex-6 VLX240T (the total utilization for both BRAMs and Slices
was close to 95%) and since the I/O was not the bottleneck, we managed to eventually
double the supported bandwidth. As will be explained further in the next section, even
if the loading time is doubled due to the sharing of the bus bandwidth among the two
cores it is still far less than the processing time. This fact in addition with a double
buffering scheme eliminates any I/O overhead. However, since we mainly focus on low-
energy, relatively low-cost multimedia embedded applications, the performance results
demonstrated in the next sections, cover the implementations of our system on both
a Virtex-6 VLX75T and a Virtex-6 VLX130T low-cost devices connected to a low-cost
ARM core.

Since our aim was to implement a low-power embedded multimedia system, special
care has been taken so as to reduce the overall power consumption of our novel device.
In particular, we implemented, in each module, numerous parallel simple cores work-
ing at smaller speeds instead of creating complex cores with large and complicated
control working at higher speeds. In order to achieve that we decomposed the actual
processing, in each module, in smaller parts; special care has been taken so to reduce
the, triggered by this decomposition, overhead in terms of memory repetition and/or
memory reads/writes. The resulted reduction in the energy consumption by adopting
this technique was up to 17%.

We have also introduced the pipeline of Figure 2 so as to minimize the data mov-
ing to/from the CPU; for example, by implementing the “Calculate RFCH” module in
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Table III. Typical Speedup Achieved for Processing of a CODID
image - 16 cores

HW Time
Module SW Time (sec) (sec) - Speedup1

Calc.Clust./obj 0.3200 0.0170 18.8
ClusterFeat. /obj 0.5000 0.0175 28.8
ClusterFeat./scene 1.8100 0.0927 19.5
Calc.RFCH/obj 0.0500 0.0074 6.72

1 Without the I/O time and CPU processing time.

hardware we heavily decreased the intercommunication needed with the CPU and that
resulted to a 12% reduction in the overall power consumption.

Additionally, with the aim of the FPGA design tools, we have placed the logic as close
as possible to the Memory Banks therefore minimizing the necessary routing while
we have also hand-designed from scratch all the processing cores (so as to eliminate
any unnecessary silicon), instead of using the ready-made IP cores provided by third
parties; those techniques reduced the overall power consumption by an additional 11%.

Moreover, we have utilized a double buffering scheme, as demonstrated in the next
section, which, together with the introduced pipeline of Figure 2, allow us to utilize
all the hardware resources at any given time. Since, certain hardware units consume
power even when they are idle (i.e., do not produce any useful results), by effectively
removing any idle states we decreased the actual energy consumed when the complete
application is executed by a further 20%.

7. EVALUATION AND PERFORMANCE RESULTS

In this Section we demonstrate the performance of our FPGA-based hardware and we
compare it with the optimized single threaded software provided by the inventors of
the algorithm when executed on a state-of-the-art low power Intel SU7300 dual-core
ULV CPU @ 1.3GHz; such a CPU can typically be used in an embedded multimedia
device.

The configuration of the embedded system demonstrated is as follows:

—Number of Calculate Clusters cores: 16/32
—Number of Cluster Features cores: 16/32
—Number of Calculate RFCH cores: 8
—Image Size: 640 × 480
—Number of Clusters(N): 80
—Number of features(f): 7
—Maximum distance (dmax): 4

Those configurations trigger the best performance-to-silicon results while the
selected algorithm’s parameters trigger the optimal accuracy-to-processing ratio based
on Ekvall and Kragic [2005]. The modules are clocked at 350 MHz on both FPGAs.
Table III and Table IV show the average time needed for each function in order to
process and classify a common object/scene of the CODID dataset [CVAP] in our
FPGA-based system. The performance variance when processing different images
is negligible (in terms of processing time for each function invocation). The speedup
triggered over the optimized software is about 20–60 times for the first two functions,
whereas for CalculateRFCH is only 6.7 times; however this last function takes less
than 10% of the total processing time and, as it has been described in Section 4, the
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Table IV. Typical Speedup achieved for processing of a CODID
image - 32 cores

HW Time
Module SW Time (sec) (sec) Speedup2

Calc.Clust./obj 0.3200 0.0086 37.6
ClusterFeat./obj 0.5000 0.0088 57.6
ClusterFeat./scene 1.8100 0.0463 39.0
Calc.RFCH /obj 0.0500 0.0074 6.7

2 We keep the same 8 cores between the two implementation sice
each such core must be able to process the next 4 lines (e.e., 32
lines in total), based on the fact that we have selected the distance
parameter to be equal to 4, and we process in both cases 32 lines
at any given time.

main reason for implementing it in the reconfigurable hardware was to minimize the
amount of data that should be sent to and from the CPU. It should be noted that in
those numbers the I/O overhead has not been taken into account but this has been
separated from the critical path due a double buffering scheme we have implemented;
this scheme is analytically described in the next paragraph.

Figure 9 demonstrates our proposed double buffering scheme which isolates the in-
tercommunication overhead, between the CPU and our hardware modules, from the
critical path. In order to measure the communication cost we calculate the transac-
tions needed in order to fully load the Feature memory with 144Kbits, assuming a
typical 32bit bus with 4-byte burst mode clocked at 100MHz. In a typical AMBA bus
those 4480 transaction needed a total of less than 0.05msec. Moreover, the measured
0.002msec write back time is indeed very low as we need to transfer the RFCH re-
sult only 1 time per image (not per image slice). The internal hardware is always
clocked at 350Mhz. Since our processing time can take, in the very best case, 1.39msec
and we use double buffering in the Feature memory (i.e., when we load a certain
slice in one part of the Feature memory we simultaneously process the previous slice
from the other part), our critical path consists only of the actual processing on our
cores.

By trying various dataset configurations with different numbers of objects and dif-
ferent scenes (thus changing the number of times each module processes a certain slice
of the image), the performance triggered is listed in Table V.

The slight decrease when we go from 1 scene to 10 scenes is due to the fact that
the time consumed by the ClusterFeatures and the CalculateRFCH functions is grow-
ing while the time consumed by the CalculateCluster stays stable between the two
cases. This is because Calculate Clusters is executed only during training; in the test-
ing case only the two other functions are executed (several times each one), and as
CalculateRFCH has a lower speed up over the others it slightly decreases the overall
performance. The average frame per second number demonstrated includes both the
detection and the training of the subjects in different scenes. Moreover, it should be
noted that the variance between the different experiments was insignificant.

Those results clearly demonstrate that our system which can trigger a speed of about
two fps can be utilized in a state-of-art multimedia system whereas no existing object
recognition system running in software can be utilized even at those relatively low
object recognition speeds.

Moreover, our system is significantly less power and energy hungry than the con-
ventional software approach. The specified Intel CPU consumes, on average, about 8W,
when executing the specified three tasks on a single core and the other core is disabled,
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Fig. 9. Timing Distribution when a 32bit Bus clocked at 100Mhz is used for I/O.

Table V. Overall Speedup at 350 MHz Including the Software Execution

Overall Overall
Speedup at 350 MHz Speedup at 350 MHz

Configuration (16 cores) fps (32 cores) fps
3 objects 11.5 1.1fps 19.65 1.87 fps
- 1 scene
10 objects 15.9 1.2fps 27.12 2.04 fps
- 1 scene
10 objects 15.1 1 fps 25.67 1.7 fps
- 10 scenes

whereas its maximum power consumption is up to 10W14. All the software power mea-
surements are based on Intel’s Power Gadget 2.0 tool. On the other hand, our larger
Virtex-6 VLX130T consumes about 2.7W on average (with a peak of less than 3.5W)
(based on the Xilinx XPower Estimator (XPE) [UG440])15 while it is also from 20 to 25
times faster than the CPU. As a result, the total energy consumed by our FPGA system
is 60 to 80 times less than that of the existing single-threaded, purely software based
approach.

In order to investigate how our algorithm behaves on a multi-core, multi-threading
environment we have also developed an openMP version of the original algorithm
which we have hand-optimized so as to get the best possible parallelism. As clearly
demonstrated in [Youssef et al. 2010] and [Saravanan et al. 2011] the power consump-
tion is increased when more cores and/or more threads are utilized in a multi-core,
multi-threaded system. As a result we investigated if the increased speedup triggered
by utilizing numerous cores and threads can counterbalance the increased demands
in terms of power; if this is the case the total energy needed for the execution of our
application can be reduced.

In our experiments we have utilized two Intel multi-cores each with a nominal power
consumption of 80W per CPU. “Talos” is a dual processor machine hosting a 4-core CPU
on each socket (Intel R© Xeon R© Processor E5620 with 12M Cache, 2.40 GHz, 5.86 GT/s
Intel R© QPI) while it also supports hypertheading (i.e., it has 8 physical cores while it
can support 16 active threads in total). The other machine “Iraklis” hosts two CPUs

14ULV. http://ultrabooknews.com/2012/02/07/intel-core-ulv-vs-lv/. SU7300. http://ark.intel.com/products/
42791/Intel-Core2-Duo-Processor-SU7300-(3M-Cache-1 3 0-GHz-800-MHz-FSB).
15Xilinx R©, UG440 XPower Estimator User Guide.
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Fig. 10. Speedup vs Number of Threads for our experiments.

with 4 cores each that do not support hyperthreading (Intel R© Xeon R© Processor E5430,
12M Cache, 2.66 GHz, 1333 MHz FSB).

In order to investigate how the system behaves when the number of utilized cores
and threads increases we executed a number of experiments each exploiting a different
number of threads. The speedup is expressed relative to the performance of the single-
threaded software; our aim is to demonstrate how efficiently the reference software
can be parallelized in terms of both power and performance. As Figure 10 clearly
demonstrates, the maximum speedup achieved in our experiments is about 5x; this
speedup is triggered when we utilized more than 32 threads which were executed on
the 8 available cores. From those results, it is clear that the multi-threaded software is
faster than the single-threaded one, since the application very frequently moves data
from the memory to the CPU, and the utilization of multiple threads hides this memory
latency.

Another interesting conclusion is that Iraklis performs much better than Talos (as
shown in Figure 11) although it features an older CPU without hyperthreading while
both systems feature the same amount of cache (12MB per CPU, 24MB in total). The
difference in the performance comes from the fact that the memory sub-system of
Iraklis is faster than that of Talos due to a faster CPU-memory interconnect system.

Moving to the power consumption both CPUs consume very close to their nominal
power (i.e., 80W) when triggering the maximum speedup (i.e., 5x for Iraklis and 3x
for Talos), whereas the power consumption in all the experiments was more than
60 W. As a result the processors consume about 150W in total while processing, in
the best case, a single CODID image every about 1.7 sec. When comparing those
numbers with the corresponding ones achieved by our FPGA system (2.7Watts for 0.5
sec per CODID image) our novel device is about 188 times better in terms of energy
consumption.

At the same time the recently introduced 8-core power efficient Xeon CPU (E5-2448),
which is optimized for embedded applications, has a nominal power of 70W while it
includes 8 cores working at 1.8GHz each. So even if this new 1.8Ghz device has the same
performance with our reference 2.66GHz multi-core system, our FPGA-based device
will still be 88 times more energy-efficient than this state-of-the-art Intel multi-core.

The recently introduced ARM-based Cortex-A9, implemented in the newest CMOS
technology, has a processing time which is very close to that of the reference Intel CPU;
on the other hand this power-optimized ARM consumes about 400mW per core16. As a
result our novel reconfigurable system is from 10 to 12 times more power efficient than

16http://www.arm.com/products/processors/cortex-a/cortex-a9.php.
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Fig. 11. Execution time (sec) for 14 CODID images vs Number of Threads.

even this state-of-the-art ARM CPU when executing the exact same object recognition
scheme. Also looking at the future ARM-based multi-cores, they are expected to be “up
to an order of magnitude more power efficient” than the current Intel-based ones [Jag
2009]; as a result, and based on our real-world measurements on the Intel multi-core,
our FPGA-based device will still be at least 8 times more energy efficient that those
future power-optimized ARM-based multi-cores.

8. LIMITATIONS AND FUTURE WORK

Although our novel embedded approach can achieve a significant speedup over the
conventional purely-software approach, the single-chip validation platform we have
used proved to be inappropriate for high performance embedded multimedia systems;
this is due to the fact that the Microblaze was very slow when executing the specified
double-precision floating point software routines. In particular, Microblaze’s low clock
rates combined with a slow Floating Point Unit, degraded the overall performance and
finally undermined the accelerated functions effect. In the near future we are going to
upgrade our system to the upcoming Zynq FPGA[DS190], which employs a hard core
ARM CPU. Our system is already fully compatible with any ARM-based embedded
framework as it is built around ARM’s AXI bus which is also the standard bus for the
Zynq Platform. The performance of the software functions is expected, based on our
initial measurements on a stand-alone Cortex A8 CPU, to be equal with that of the Intel
processor used as a reference, therefore the final single chip solution will exploit the
full speedup of our hardware implementation. Furthermore, we are about to convert
the floating point arithmetic to fixed point arithmetic since, based on our experiments,
the dynamic range of all the internal variables is limited; this will certainly increase
even more the performance on both the software and the hardware sides.

9. CONCLUSIONS

This article describes a complete low-power embedded object recognition system that
can support multi frames per second speeds and can efficiently be utilized in multi-
media systems performing complex object recognition (such as fixed and mobile game
consoles or tomorrow’s smartphones). The system implements one of the most efficient
Object Recognition Algorithms, the Receptive Fields Cooccurrence Histograms (RFCH)
one. This system is highly flexible, since it is not fixed to a specific image size, but in-
stead it is designed to support image sizes up to High Definition (HD), allowing it to be
utilized in numerous distinct multimedia applications. Additionally, the number of fea-
tures and the number of clusters that are supported are not fixed either, and they can
be altered by just changing the software part of the system which offers even greater
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flexibility. Moreover, the programmability feature of the FPGA allows our system to
be efficiently instantiated in numerous distinct multimedia applications; for example
in a high-accuracy multi-object mode it can utilize our algorithm whereas the recon-
figurable sub-system can be rapidly re-programmed to execute a simple face detection
algorithm when such a demand is triggered by the end-application. The presented
system, when implemented on a relatively low-cost Virtex-6 FPGA connected to an
ARM, can be up to 27 times faster than the conventional software approach whereas
it consumes about two orders of magnitude less energy than either a low-power CPU
executing the exact same algorithm or the recently introduced low-power multi-cores
that are optimized for embedded applications.
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