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Jointly-optimized Searching and Tracking with
Random Finite Sets

Savvas Papaioannou, Panayiotis Kolios, Theocharis Theocharides,
Christos G. Panayiotou and Marios M. Polycarpou

Abstract—In this paper we investigate the problem of joint searching and tracking of multiple mobile targets by a group of mobile
agents. The targets appear and disappear at random times inside a surveillance region and their positions are random and unknown.
The agents have limited sensing range and receive noisy measurements from the targets. A decision and control problem arises,
where the mode of operation (i.e. search or track ) as well as the mobility control action for each agent, at each time instance, must be
determined so that the collective goal of searching and tracking is achieved. We build our approach upon the theory of random finite
sets (RFS) and we use Bayesian multi-object stochastic filtering to simultaneously estimate the time-varying number of targets and
their states from a sequence of noisy measurements. We formulate the above problem as a non-linear binary program (NLBP) and
show that it can be approximated by a genetic algorithm. Finally, to study the effectiveness and performance of the proposed approach
we have conducted extensive simulation experiments.

Index Terms—Bayesian target tracking, Intelligent systems, Sensor control, Area coverage
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NOMENCLATURE

xk ∈ X Single target state vector at time k.
zk ∈ Z Measurement vector at time k.
sk ∈ A Single agent state vector at time k
uk ∈ Uk Single agent control action at time k.
Xk ∈ F(X ) Multi-target state (i.e. finite set) at

time k.
Zk ∈ F(Z) Measurement set (i.e. finite set) at

time k.
πk|k−1(xk|xk−1) Transitional density of xk based on

time k − 1 given xk−1.
gk(zk|xk, sk) Measurement likelihood function of

zk conditioned on xk and sk.
pD(xk, sk) Single agent sensing model i.e. prob-

ability of detection.
pk|k−1(xk|z1:k−1) Predictive distribution of xk based

on time k − 1 given z1:k−1.
pk(xk|z1:k) Posterior distribution of xk at time k

given z1:k.
fk|k−1(Xk|Z1:k−1) Multi-object predictive distribution

of Xk based on time k − 1 given
Z1:k−1.

fk(Xk|Z1:k) Multi-object posterior distribution of
Xk given Z1:k.

rk|k−1 Single target probability of existence
at time k based on time k−1 (prior).

rk Single target probability of existence
at time k (posterior).

vk|k−1 Maximum number of hypothesized
targets at time k based on time k−1.

vk Maximum number of hypothesized
targets at time k (posterior).
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Zk|k−1 Predicted ideal measurement set
(PIMS) for time k based on time k−1.

X̂k|k−1 Estimation ofXk based on time k−1.
X̂k Estimation of Xk based on time k.
n̂k|k−1 Estimation of the true number of tar-

gets nk based on time k − 1.
n̂k Estimation of the true number of tar-

gets nk based on time k.
σk Variance of the estimated number of

targets n̂k
σ̃k Normalized variance of the esti-

mated number of targets n̂k
S = {1, 2, ..., |S|} The finite set of all agents for search-

ing and tracking.
ξsearch Multi-agent searching objective

function.
ξtrack Multi-agent tracking objective func-

tion.

1 INTRODUCTION

The main objective of a search and rescue mission (e.g.
ground search and rescue, air-sea rescue, etc) is to search
for and provide aid to people who are in imminent danger
as efficiently and safely as possible. When disasters happen
e.g. earthquakes, marine disasters and aircraft accidents, the
search and rescue (SAR) missions are of critical importance
for finding survivors and saving lives. SAR missions how-
ever could be very dangerous and expensive (e.g. the search
for the Malaysian Airlines Flight 370 that disappeared on 8
March 2014 had costed a total of more than US $150 million).

On the other hand, the miniaturization and cost re-
duction of electronic components and the recent advances
in robotics and specifically in small unmanned aerial ve-
hicles (UAVs) have spurred an unprecedented interest on
intelligent mobile agents for group missions. Motivated by
this, we believe that a team of autonomous mobile agents
could become an important aid in many search and rescue
missions by improving the efficiency while at the same
time reducing the need to place the rescuers in dangerous
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situations. Take for instance a maritime disaster where a
team of drones could be deployed to search for and track
survivors until further assistance is available.

In this work we are interested in the task of searching for
and tracking multiple survivors or targets of interest in SAR
missions with a group of autonomous mobile agents. This
is a challenging problem since a) the number of survivors
that needs to be tracked at a time instance is random,
unknown and thus needs to be estimated, b) the agents
need to estimate the location of the survivors through noisy
measurements and c) the mobile agents exhibit a limited
sensing range thus there is a need for efficient searching.
Finally, the problem becomes even more challenging due to
the tradeoff which arises on how many resources to allocate
in each task i.e. searching or tracking at each time instance so
that the joint search and track (SAT) objective is achieved as
best as possible.

To address the above challenges, we propose a uni-
fied probabilistic approach to jointly tackle the problem of
searching and tracking of multiple moving targets by a team
of mobile agents. The proposed approach, refereed to here-
after as JoSAT (Jointly-optimized Searching and Tracking) is
formulated in the framework of recursive Bayesian multi-
object stochastic estimation using random finite sets (RFS)
[1], [2] which allows us a) to simultaneously estimate the
time-varying number of targets and their states from a se-
quence of noisy measurements and b) avoids the problem of
data-association in multi-target tracking. The contributions
of this paper are:

• Provides a multi-agent probabilistic framework for
jointly searching and tracking multiple targets inside
a given surveillance area. We utilize the theory of
random finite sets (RFS) in a multi-agent frame-
work to accurately capture the inherent uncertainty
present in many search-and-track (SAT) missions.

• Develops a novel decision (i.e. the agents can switch
between search and track mode during the mission)
and control (i.e. control the movement of all agents)
algorithm which takes into account the stochasticity
of the system in order to tackle the joint objective of
searching and tracking.

• Formulates the decision and control problem as a
non-linear binary optimization program which is
then solved using a genetic algorithm.

The rest of the paper is organized as follows. Section 2
reviews the existing literature on searching and tracking by
single and multiple agents, demonstrating in the way the
contributions of this work. Section 3 outlines the problem
addressed in this paper and Section 4 presents an overview
of the proposed system. Section 5 provides a brief overview
on the framework that the proposed approach is based on
namely a) random finite sets (RFS) and b) Bayesian multi-
object stochastic filtering and then Section 6 presents the
details of the proposed approach. Section 7 reformulates
the problem in the context of mathematical programming,
demonstrates the complexity of the resulting non-linear
binary program and elaborates on how the problem can
be solved in practice using a genetic algorithm. Section
8 conducts an extensive performance analysis and finally,
Section 9 concludes the paper and discusses future work.

2 RELATED WORK
Coordinated teams of agents unlock significantly greater ca-
pabilities than what is possible by single-handed missions.
By taking this into consideration, existing literature has
looked into several challenging problems that multi-agent
systems can successfully tackle.

The coverage problem is among the most cited problems,
where a fleet of airborne agents need to spread across an
area over the shortest time interval for situational awareness
or when searching for particular targets. Research works
have focused around task assignment, scheduling and path
planning of the multiple agents, considering physical re-
source constraints such as the total number of agents, their
battery levels and their communication ranges [3] [4] [5] [6]
[7] [8].

Another challenging problem is that of localization and
tracking of single or multiple targets [9] [10] [11]. For this
problem both centralized and distributed solutions are be-
ing investigated for the envisioned tracking strategies which
generally seek to minimize the tracking error for all detected
targets [12] [13] [14].

Interestingly though, many of these problems are inter-
connected and interrelated and thus need to be looked at
jointly especially in certain settings such as in search and
rescue missions (SAR) where efficiency and effectiveness
are of essence. The problem of SAR with single or multiple
robots has attracted a wide interest in the recent years with
the research community proposing methods from multi-
robot cooperative learning [15] and path-planning strategies
[16] to collaborative online task-planning by heterogenous
robot teams [17] and autonomous multi-UAV systems for
SAR missions [18]. Detailed surveys on multi-robot SAR can
be found in [19], [20]. In this paper however, we are focusing
on a particular sub-problem i.e. the problem of search and
track which has also attracted a wide interest by the research
community because of it importance in SAR missions. An
interesting work in [21] develops a probabilistic approach
for the SAT problem but only for the single-agent single-
target case. Similarly, a more recent work [22] investigates
the SAT problem for the single-agent single-target scenario,
and proposes a model-predictive control (MPC) framework
for the path-planning problem. The work [23] considers
the cooperative management of groups of UAVs as an
optimization problem of the information obtained through
multi-target tracking. Compared to our work however, the
work in [23], is mainly focused on improving the tracking
accuracy without including the search objective. The works
in [24], [25] develop an information-theoretic multi-agent
SAT approach which is used to search for a single stationary
target by minimizing the entropy of the target distribution
at each time step. Moreover, [26] looked at the problem of
route planning for multi-agent SAT missions and proposed
a Fisher information based approach to route planning.
However, in [26] the problems of false alarms and data
association are not considered. Similarly, the work in [27]
presents a receding horizon controller (RHC) approach to
jointly drive a group of UAVs to SAT missions. In contrast,
in the proposed approach the data-association problem can
be avoided altogether. Notably, the classical approaches to
multi-target tracking require to first solve the data associ-
ation problem and then estimate the states of the targets.
RFS-based approaches can estimate the states of the targets
directly without requiring to first solve the data-association
problem [28]. In addition, existing techniques make weak
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assumptions regarding the number of targets, the target
dynamics and the measurement models.

Complementary to the aforementioned studies, the pro-
posed system advances the state-of-the-art, by considering
a multi-agent approach where the agents can dynamically
switch their mode of operation between searching and
tracking during the mission in order to jointly optimize
the coupled objective of searching and multi-target tracking
and by developing a unified probabilistic search-and-track
framework based on random finite sets which avoids the
problem of data-association and accounts for the uncertain-
ties in the number of targets, target dynamics and measure-
ment models. Finally, this work derives both optimal and
heuristic solutions to solve the resulting joint searching and
tracking problem.

3 PROBLEM DEFINITION

In this work we assume that the agents can operate in
either search or track mode and that they can switch modes
dynamically during the mission in order to optimize the
joint search and track objective. The problem to solve can
be stated as follows: At each time step a fixed number of agents
must find their mode of operation and the control actions which
result in the best tradeoff between maximizing the search coverage
and tracking all targets found in the surveillance area.

Throughout this paper we consider the following mod-
eling assumptions.

3.1 Single Target Dynamics
The single target state vector xk ∈ X , k ∈ N evolve in time
according to the following equation:

xk = ζk(xk−1) + vk (1)

where the X ⊆ Rnx denotes the state space and the known
function ζk : Rnx → Rnx models the dynamical behavior
of the target. Eqn. (1) describes the evolution of the state
vector as a first order Markov process with transitional
density πk|k−1(xk|xk−1) = pv(xk − ζk(xk−1)). The random
process vk ∈ Rnx , which is referred to as the process noise, is
IID according to the probability density function pv(.). The
role of the process noise is to model random disturbances
in the evolution of the state. Without loss of generality, in
this paper we assume that the state vector xk ∈ X ⊆ R4

is composed of position and acceleration components i.e.
xk = [px, ṗx, py, ṗy]> where (px, py) give the 2D position
of the target in Cartesian coordinates and (ṗx, ṗy) are the
velocities of the target in the x and y direction respectively.

Suppose now that multiple targets xik exists inside the
surveillance region where we assume that the targets are
independent of each other. The targets can spawn from
anywhere in the state space X and target births and deaths
occur at random times. This means that at each time k, there
exist nk target states x1

k, x
2
k, ..., x

nk
k , each taking values in

the state space X where both the number of targets nk and
their individual states xik,∀i are random and time-varying.
The group of target states at time k can now be modeled as
the set:

Xk = {x1
k, x

2
k, ..., x

nk
k } ∈ F(X ) (2)

where F(X ) denotes the space of all finite subsets of X .
Note here that nk is the true but unknown number of targets
at time k which needs to be estimated along with the target
states xik,∀i. In Sec. 5-6 it will become evident that Xk is

actually a random finite set (RFS). We will refer to Xk as the
multi-target state.

3.2 Single Agent Sensing Model
The ability of an agent to sense its 2D environment is
modeled by the function pD(xk, sk) that measures the
probability that a target with state xk at time k is de-
tected by an agent with state (i.e. 2D position coordinates)
sk = [sx, sy]>k ∈ A ⊆ R2. More specifically the detection
probability of a target with state xk at position pk = Hxk
(where H is a matrix that extracts the xy-coordinates of a
target from its state vector) from an agent with state sk, is
given by:

pD(xk, sk) =

{
pmax
D if dk < R0

max{0, pmax
D − η(dk −R0)} if dk ≥ R0

(3)
where dk = ‖Hxk − sk‖2 denotes the Euclidean distance
between the agent and the target, pmax

D is the detection
probability for targets that reside within R0 distance (i.e.
the agents primary radius) from the agent’s position and
finally η captures the reduced effectiveness of the agent to
detect distant targets.

When an agent detects a single target it receives a mea-
surement vector zk ∈ Z which is related to the target state
as follows:

zk = hk(xk, sk) + wk (4)

where Z ⊆ Rnz denotes the measurement space and the
function hk : Rnx → Rnz projects the state vector to the
measurement space. The random process wk ∈ Rnz is IID,
independent of vk and distributed according to pw(.). The
probability density of measurement zk for a target with state
xk when the agent is at state sk is given by the measurement
likelihood function gk(zk|xk, sk) = pw(zk − hk(xk, sk)).
Without loss of generality, in this paper we assume that the
measurement vector zk ∈ Z consists of range and bearing
measurements.

That said an agent can receive mk measurements
z1
k, z

2
k, ..., z

mk
k at each time step k each taking values in the

measurement spaceZ , wheremk and zik,∀ i are random and
time varying. Thus the group of received measurements by
an agent at time k can be modeled as the set:

Zk = {z1
k, z

2
k, ..., z

mk
k } ∈ F(Z) (5)

where F(Z) denotes the space of all finite subsets of Z . In
Sec. 5-6 it will be shown that Zk is also a random finite set.
Zk will be referred to as the multi-target measurement set.

3.3 Agent Dynamics
Let S = {1, 2, ..., |S|} be the set of all mobile agents that we
have in our disposal operating in a discrete-time setting. At
time k the 2D surveillance area A ⊆ R2 is monitored by |S|
mobile agents with states s1

k, s
2
k, ..., s

|S|
k , each taking values

in A. Each agent is subject to the following dynamics with
bounded control inputs:

sjk = sjk−1 +

[
l1∆Rcos(l2∆θ)
l1∆Rsin(l2∆θ)

]
,
l2 = 0, ..., Nθ
l1 = 0, ..., NR

(6)

where sjk−1 = [sjx, s
j
y]>k−1 denotes the position (i.e. xy-

coordinates) of the jth agent at time k − 1, ∆R is the radial
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Fig. 1. The figure shows an illustrative example of the agent’s admissible
control actions Uk at time k. In this example the radial displacement
∆R = 5m, NR = 2 and Nθ = 8 which gives a total of 17 control
actions, including the initial position of the agent at time k − 1 which is
marked with a circle.

step size, ∆θ = 2π/Nθ and the parameters (Nθ, NR) control
the number of possible control actions. We denote the set
of all admissible control actions of agent j at time k as
Ujk = {sj,1k , sj,2k , ..., s

j,|Uk|
k } as computed by Eqn. (6). An

illustrative example is shown in Fig. 1.

3.4 JoSAT Objective
The jointly optimized search and track objective can now be
more formally defined as:

(P1)arg min
ujk,∀j∈S

ξαsearch({ujk : j ∈ α}) +

|S|∑
j=1
j 6∈α

ξjtrack(ujk, Z
j

k|k−1,ujk
)


(7)

subject to α ∈ P(S)

ujk ∈ Ujk , ∀j ∈ S
Zj
k|k−1,ujk

= ZPIMS(X̂j
k|k−1, u

j
k) , ∀j ∈ S∥∥∥uik − ujk∥∥∥ > dmin ,∀ i 6= j

where α is the decision variable for the agents’ operating
mode and P(S) =

{
∅, {1}, {2}, . . . , {|S|}, {1, 2}, . . .

}
de-

notes the power set of S. The function ξαsearch({ujk : j ∈ α})
takes as input a set of control actions for the agents in search
mode and returns the total cost of searching and the function
ξjtrack(ujk, Z

j

k|k−1,ujk
) returns the cost of tracking when the

control ujk is taken and the predicted multi-target measure-
ment set Zj

k|k−1,ujk
is supposed to have been received by

agent j. X̂j
k|k−1 denotes the estimated multi-target state for

time k from agent j based on time k − 1.
The cost of tracking depends on the control ujk that is

applied to agent j through the future received measure-
ments (i.e. depending on the control action taken, different

measurements will be received). The measurement genera-
tor function ZPIMS(X̂j

k|k−1, u
j
k) generates the predicted ideal

multi-target measurement set based on X̂j
k|k−1 and ujk.

Finally, the constraint
∥∥∥uik − ujk∥∥∥ > dmin,∀ i 6= j does

not allow any two agents to get close to each other. This is
by design since in this work there is no benefit of two agents
to be close to each other, and for instance search the same
area or perform tracking of the same target.

We should note here that the optimization of Eqn. (7)
finds the joint control actions over all agents, and at the
same time partitions the agents into two groups i.e. search
or track so that the joint search-and-track cost is minimum.
In other words, at each time-step, the system automatically
assigns the agents to searching or tracking mode and selects
the joint control actions which minimize the JoSAT objective.
Also note, that in this work we do not assume any time
delays between agents i.e. all agents have access to the same
clock and they are fully synchronized.

4 SYSTEM OVERVIEW

In this section we give an overview of the proposed sys-
tem architecture, shown in Fig. 2, and we outline how we
have incorporated the theory of multi-object filtering to the
problem of multi-agent joint searching and tracking.

To summarize, an agent j ∈ S can operate in either search
or track mode and in each mode the agent is subject to a
set of admissible control actions denoted by Ujk for time k.
The agents can dynamically switch between the two modes
during the mission in order to maximize the joint global
objective of searching and tracking i.e. Eqn (7). When a
subset of agents α ⊆ S is in search mode the collective
objective over all agents j ∈ α is the maximization of the
covered area. In other words the agents should traverse the
surveillance area in such a way so that the coverage is max-
imized. On the other hand when a subset of agents αC ⊆ S
(where αC denotes the complement of α with respect to S)
is in track mode, their objective is the maximization of the
tracking performance, i.e. to move in locations where the
number of targets and their states is estimated as accurately
as possible. Deciding on the subset of agents in search or
track mode is governed by the respective objective functions
that control the movement of the agents to achieve the best
tradeoff. In other words the proposed controller solves the
optimization of Eqn. (7).

In order to achieve this, the proposed system takes the
following steps: The number of targets and their states at
time k are jointly modeled as a random finite set Xk (also
known as multi-target state) which is a generalization of a
random variable/vector (see Sec. 5).

Each agent maintains a multi-object probability distribu-
tion (see Sec. 5-6) which jointly accounts for the uncertainty
in the number of targets and their states (i.e. position and
velocity) inside its sensing range (this multi-object probabil-
ity distribution is a generalization of the probability density
function on random finite sets i.e. X). Let the posterior
multi-object distribution at time k − 1 be denoted by f jk−1

for agent j. To be precise f jk−1 = f jk−1(Xj
k−1|Z

j
1:k−1) where

Xj
k−1 is conditioned on the received measurement sets

Zj1:k−1 up to time k − 1, however we will often use the
short notation i.e. f jk−1 to denote this distribution.
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Fig. 2. The figure illustrates the proposed system architecture with S = {1, 2, ..., |S|} agents. The following recursion is shown: a) for each agent j
the predictive multi-object probability distribution fj

k|k−1
is first computed from the posterior fjk−1 using the prediction step, b) the estimated numbed

of targets and their states are extracted from each predictive multi-object distribution, c) an optimization problem is then solved where different
hypothetical control actions from the set of admissible control actions Ujk are generated for each agent. The mode of operation i.e. search or track
and the corresponding control actions for all agents are jointly selected so that the total cost of searching (given by the searching objective function
i.e. ξsearch) and tracking (given by the tracking objective function i.e. ξtrack) is minimized. d) Finally, the agents move to the new states according
to the selected optimized controls {u1∗k , . . . , u

|S|∗
k } and compute the posterior multi-object distribution fjk using the received measurements Zjk at

time k. The same procedure is the repeated for the next time instance.

In the first step the predictive density f jk|k−1 =

f jk|k−1(Xj
k|Z

j
1:k−1) is obtained through a prediction step

as the figure shows. This allows us to make predictions
regarding the number of targets and their states for the
next time-step. The estimated number of targets (n̂jk|k−1)
and their states (X̂j

k|k−1) for the next time-step are extracted
from the predictive density.

Based on these predictions the proposed controller finds
the combination of control actions (ujk ∈ Ujk ∀j) as well as
the mode of each agent which minimizes the convex sum of
the search and track objective functions (see Sec. 6).

The optimal control actions u1∗
k , ..., u

|S|∗
k are then applied

to the agents. Each agent then moves to its new state at time
k where it receives the multi-target measurement set Zjk (if
it exists). This measurement set at time k is then used in the
update step i.e. each agent uses the received measurement
set to compute the posterior distribution f jk = f jk(Xj

k|Z
j
1:k).

The updated (i.e. final) estimates of the number of targets
n̂jk and their states X̂j

k for time k are then computed from
f jk for each agent j. The total estimated number of targets at
time k is then computed as n̂k =

∑
j n̂

j
k,∀j and their states

as X̂k =
⋃
j X̂

j
k,∀j. This procedure is repeated recursively

over time.

We should note here that the number of targets (and
their states) is being estimated recursively over time. Based
on these estimates, the mode of operation should be care-
fully chosen. For instance when no targets are inside the
surveillance area, all agents should be in search mode, etc. It
is also worth noting that the control actions taken, affect the
received measurements which in turn affect the estimation
of the target state during the update step. Hence, to optimize
the control actions would require the knowledge of all the
future measurements. In the next section we provide an
overview of random finite sets for multiple target tracking
which we use subsequently to address the aforementioned
challenge in our proposed approach.

5 BACKGROUND ON MULTI-TARGET TRACKING

Multiple target tracking (MTT) [29], [30] refers to the prob-
lem of estimating the number and states of multiple targets
from noisy sensor measurements in the presence of false
alarms or clutter. MTT is nowadays found in many applica-
tions including surveillance, defense, autonomous vehicles,
robotics, etc. In this section we only give a brief overview on
the various MTT techniques. A more detailed description of
MTT algorithms can be found in [29], [31].

In this work we divide MTT algorithms in two main
categories namely data association-based and data associ-
ation free. Data association-based MTT algorithms such as
the MHT, JPDA and GNN [29], [31] require to first solve the
measurements-to-tracks assignment problem and only then
proceed with the multi-target state estimation. On the other
hand, data association free methods such as the RFS-based
PHD, CPHD and Multi-Bernoulli filters [28], [30] can bypass
the data association problem and proceed directly with the
multi-target state estimation. Depending on the application,
this property could be highly desirable since it significantly
reduces the computational complexity of MTT algorithms.

The PHD filter [32] is the first computationally desir-
able approximation of the multi-target Bayes posterior. In
particular it propagates the first-order statistical moment
of the multi-target posterior in place of the full posterior
distribution. The computationally more expensive CPHD
filter [33] provides a better performance compared to the
PHD filter since it jointly propagates the first-statistical mo-
ment and the cardinality distribution. Unlike the PHD and
CPHD filters which propagate moments the multi-Bernoulli
filter [34] approximates the true multi-target posterior dis-
tribution as multi-Bernoulli and propagates the parameters
of a multi-Bernoulli distribution. The multi-Bernoulli filter
avoids many of the problems present in the PHD/CPHD
filters i.e. these filters require a clustering step to extract state
estimates which introduces an additional source of error and
increases the computationally complexity. This makes the
multi-Bernoulli filter a more attractive solution with linear
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complexity in the number of targets and measurements.
We should also point out that with the introduction of

labeled RFSs [35], [36] and in particular with the inception of
the generalized labeled multi-Bernoulli (GLMB) density the
multi-target Bayes filter can tackle the data-association prob-
lem and provide target tracks. More specifically, the GLMB
multi-target filter [37] is able to simultaneously estimate
the number of targets and their states from a set of noisy
observations in the presence of data association uncertainty,
detection uncertainty and clutter. However, compared to the
multi-Bernoulli filter the computational complexity of the
GLMB filter is at best cubic in the number of measurements.
An extension to the multi-Bernoulli filter i.e. the Labeled
multi-Bernoulli (LMB) filter, was presented in [38]. The LMB
filter achieves better performance compared to the multi-
Bernoulli filter while at the same time outputs target tracks.
This however comes with an increased computational cost
i.e. its computational complexity is at worst cubic in the
number of measurements. Recently the authors in [39] have
presented a more efficient implementation of the GLMB
filter with linear complexity in the number of measurements
and quadratic in the number of targets by combining the
prediction and update into a single step.

5.1 Random Finite Sets
A random finite set (RFS) is a finite-set-valued random vari-
able, which differs from a random vector in two ways: a) the
number of elements in a RFS is random and b) the order of
the elements in a RFS is irrelevant. More specifically, a RFS
X is completely specified by a) its cardinality distribution
ρ(n) = p(|X| = n), n ∈ N0 which defines a probability
distribution over the number of elements in X and b) by
a family of conditional joint symmetric probability distri-
butions p(x1, ..., xn|n), x1, ..., xn ∈ X that characterize
the distribution of its elements over the state space X . In
connection with our problem, the random variable n can be
used to model the time-varying number of targets (i.e. the
number of survivors at some point in time) and thus ρ(n) is
the probability distribution of the number of targets.

The belief density or otherwise known as the multi-object
probability density function (pdf) f(X) of the RFS X is
given by: f(X) = f({x1, ..., xn}) = n!ρ(n)p(x1, ..., xn|n)
and the notion of integration is given by the set-integral
which is defined as:∫
F(X )

f(X)δX = f(∅) +
∞∑
n=1

1

n!

∫
f({x1, ..., xn})dx1

...dxn

(8)
where F(X ) is the space of finite subsets of X . The follow-
ing RFSs are relevant in this paper:

5.1.1 Bernoulli RFS
The Bernoulli RFS X can either be empty with probability
1 − r, r ∈ (0, 1) or be a singleton set (i.e. its set cardinality
is equal to one) with (existence) probability r and with its
element distributed over the state space X according to pdf
p(x). The Bernoulli multi-object pdf is given by:

f(X) =

{
1− r if X = ∅
rp(x) if X = {x} (9)

Thus a Bernoulli RFS can be completely characterized by the
parameter set (r, p(x)).

5.1.2 Multi-Bernoulli RFS
The multi-Bernoulli RFS X =

⋃v
i=1Xi is a union of a fixed

number v (where v is known) of independent Bernoulli RFSs
Xi with parameters {(ri, pi(.))}vi=1 with multi-object pdf
given by (see [30] pp. 102):

f({x1, ..., xn}) =
∑

1≤i1 6=,...,6=in≤v

(
Qi1,...,in ·pi1(x1)···pin(xn)

)
(10)

where

Qi1,...,in =

(
v∏
i=1

(1− ri)
)
· ri1

1− ri1
· · · rin

1− rin

Here the notation
∑

1≤i1 6=,...,6=in≤v(.) enumerates the n-
permutations of v i.e. P vn = v!

(v−n)! . In other words, it
enumerates all ordered arrangements of n elements taken
from a set of size v. A multi-Bernoulli distribution is com-
pletely specified with the parameter set {(ri, pi(.))}vi=1. In
connection with our problem v can be used to model the
maximum number of hypothetical targets maintained by an
agent.

5.1.3 Poisson RFS
The poisson RFS X has a cardinality distribution which is
Poisson with parameter λ i.e. ρ(n) = e−λλn

n! , n = 0, 1, 2...
and elements which are independent and identically dis-
tributed (IID) random variables and distributed according
to p(x) on X . The multi-object pdf is given by:

f(X) = e−λ
∏
x∈X

κ(x) (11)

where κ(x) = λ p(x) is called the intensity function for the
Poison RFS.

5.2 Multi-object Stochastic Filtering
In stochastic filtering [40] we are interested in the posterior
probability density pk(xk|z1:k) of some hidden state xk at
time k given all measurements z1:k = z1, ..., zk. Assuming
an initial density on the state p0(x0), the posterior density
at time k can be computed using the Bayes recursion as:

pk|k−1(xk|z1:k−1) = (12)∫
πk|k−1(xk|xk−1) pk−1(xk−1|z1:k−1) dxk−1

pk(xk|z1:k) =
gk(zk|xk) pk|k−1(xk|z1:k−1)∫
gk(zk|xk) pk|k−1(xk|z1:k−1) dxk

(13)

where Eqn. (12) and (13) are referred to as the prediction
and update steps respectively. The function πk|k−1(xk|xk−1)
models the uncertainty of the current state given the pre-
vious state and is referred to as the transitional density
and the function gk(zk|xk) describes the distribution of
measurements given the current state and is referred to
as the measurement likelihood function. At each time step
the hidden state is usually extracted from the posterior
distribution using the expected a posteriori (EAP) or the
maximum a posteriori (MAP) estimators.

The above recursion can be extended [28] in the case of
RFSs. Suppose now that the hidden state and measurements
are RFS and that at time k − 1 the posterior multi-object
pdf of X is given by fk−1(Xk−1|Z1:k−1). The predicted and
updated multi-object densities are then given by the multi-
object Bayes recursion:
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fk|k−1(Xk|Z1:k−1) (14)

=

∫
φk|k−1(Xk|Xk−1) fk−1(Xk−1|Z1:k−1) δXk−1

fk(Xk|Z1:k) =
ϕk(Zk|Xk) fk|k−1(Xk|Z1:k−1)∫
ϕk(Zk|Xk) fk|k−1(Xk|Z1:k−1) δXk

(15)

where the integrals in Eqn. (14)-(15) are set integrals, and the
functions φk|k−1(Xk|Xk−1) and ϕk(Zk|Xk) are the multi-
object transitional density and the multi-object likelihood
function respectively. Because the recursion above has no
analytic solution in general, several approximations exist (as
in [30]) which propagate only summary statistics instead
of the full posterior density. A prominent approach is the
multi-Bernoulli filter [34], [41] which is used in this work
and elaborated in Sec. 6.

6 JOSAT MULTI-TARGET FRAMEWORK

This section develops the components of the JoSAT sys-
tem using random finite sets and derives the multi-agent
objective functions for the tasks of searching and tracking.
Intuitively, the collection of targets at each time instance can
be seen as a set which changes size as targets appear and
disappear from the surveillance region (e.g. due to births
and deaths). Since this set consists of a random number of
random variables it can be modeled as a random finite set
and the same is true for the received measurements as we
detail below.

6.1 Multi-target Dynamics
Earlier in subsection 3.1 we have described the single target
dynamics, in this subsection we will use random finite sets
to describe the multi-target dynamics.

Using the RFS theory we can now define a multi-object
dynamic model i.e. the evolution in time of the RFS Xk as
follows:

Xk =

 ⋃
xk−1∈Xk−1

Ψ(xk−1)

 ∪ Γk (16)

where Ψ(xk−1) is a Bernoulli RFS which models the evo-
lution of the set from the previous state, with parameters
(pS(xk−1), πk|k−1(xk|xk−1)). Thus a target with state xk−1

continues to exists at time k with surviving probability
pS(xk−1) and moves to a new state xk with transition
probability πk|k−1(xk|xk−1), (see Eqn. (1)). Otherwise the
target dies with probability 1−pS(xk−1). Note here that Xk

is a multi-Bernoulli RFS assuming that the RFSs constituting
the union in Eqn. (16) are mutually independent. Finally,
the term Γk denotes the multi-Bernoulli RFS of spontaneous
births with uniform spatial distribution over X . We now
have a multi-object transition model i.e. Eqn. (16) which
jointly incorporates motion, birth and death for multiple
targets.

6.2 Multi-target Measurement Model
At each time step an agent can receive a time-varying
number of measurements i.e. the number of measurements
is random and depends on: a) the number of targets in-
side the agent’s sensing range which is random as well,
b) whether all targets have been detected or not, and c)

whether measurements come from targets or from clutter
(i.e. false alarms). That said, the measurements received at
some time instance can be modeled as a random finite set.
The multi-target measurement set Zjk of agent j at time k is
given by:

Zjk =

 ⋃
xjk∈X

j
k

Θ(xjk)

 ∪ Kk (17)

where Xj
k ⊆ Xk is the multi-target state perceived by

the jth agent. Θ(xjk) is a Bernoulli RFS which mod-
els the target generated measurements with parameters
(pD(xjk, s

j
k), gk(zjik |x

j
k, s

j
k)). Thus a target with state xjk at

time k is detected by the jth agent with state sjk with
probability pD(xjk, s

j
k) (see Eqn. (3)) and generates a mea-

surement zjik with likelihood gk(zjik |x
j
k, s

j
k) (see Eqn. (4))

or is missed with probability 1 − pD(xjk, s
j
k) and generates

no measurements. Additionally an agent can receive false
alarms measurements i.e. the term Kk is a Poisson RFS
which models the set of false alarms or clutter received by an
agent at time k with intensity function κk(zjik ) = λfc(z

ji
k ),

where in this paper fc(.) denotes the uniform distribution
over Z .

Note here that Eqn. (17) accounts for the detection uncer-
tainty and clutter and that in this work the following holds
by design Xk =

⋃
j X

j
k,∀j and Xj1

k ∩X
j2
k = ∅, ∀j1, j2 i.e. a

target cannot be tracked by more than one agent.

6.3 Tracking Multiple Targets
When the agent j is in track mode the objective is to estimate
at each time k both the number of targets njk and their
respective states xjik ,∀i ∈ {1, ..., n

j
k} inside its sensing range

from a sequence of noisy measurement sets Zj1:k. In essence
we would like to compute the multi-object density of Xj

k

given the measurement sets Zj1:k i.e. f jk(Xj
k|Z

j
1:k) using the

multi-object Bayes recursion of Eqn. (14) - (15). The RFS
formulation of subsections 6.1-6.2 however, allows us to
compute this recursion with a multi-Bernoulli filter [34]
which approximates the multi-object posterior density as
multi-Bernoulli distribution and propagates only its param-

eters {(rjik , p
ji
k (.))}v

j
k
i=1 in time instead of the full distribution.

For brevity, in the rest of the paper, we will denote the multi-
Bernoulli distribution at time k as fk = {(rik, pik(.))}vki=1.

Furthermore, the multi-Bernoulli filter recursion is sum-
marized here. A detailed description of the multi-Bernoulli
filter can be found in [34]. The multi-Bernoulli filter pro-
ceeds as follows: The predictive multi-object density at time
k is given by:

fk|k−1 = f
persist
k|k−1 ∪ f

birth
k (18)

where fpersist
k|k−1 = {(rik|k−1, p

i
k|k−1(.))}vk−1

i=1 describes the set of
persisting targets from the previous time-step and fbirth

k =
{(rik, pik(.))}Γki=1 are the parameters of a multi-Bernoulli RFS
for the new-born targets at time k. fpersist

k|k−1 is further given
by:

rik|k−1 = rik−1

〈
pik−1, pS

〉
(19)

pik|k−1(x) =

〈
πk|k−1(x|.), pik−1(.)pS(.)

〉〈
pik−1, pS

〉 (20)
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where the notation < f, g > is defined as
∫
f(x)g(x)dx.

Let the predictive multi-object density denoted by
fk|k−1 = {(rik|k−1, p

i
k|k−1(.))}vk|k−1

i=1 where now the term
vk|k−1 denotes the number of hypothesized Bernoulli com-
ponents after accounting for the target births and let
the multi-object measurement set at time k be Zk =
{z1
k, ..., z

mk
k }. The posterior multi-object distribution at time

k is given by a multi-Bernoulli distribution with parameters:

fk = f
legacy
k ∪ fmeas

k (21)

where f
legacy
k = {(rik, pik(.))}vk|k−1

i=1 contains legacy tracks
i.e. updates of predicted tracks, assuming that no measure-
ments were collected from them and given by:

rik = rik|k−1

1−
〈
pik|k−1, pD(., sk)

〉
1− rik|k−1

〈
pik|k−1, pD(., sk)

〉 (22)

pik(xk) = pik|k−1(xk)
1− pD(xk, sk)

1−
〈
pik|k−1, pD(., sk)

〉 (23)

where pD(xk, sk) is the probability of detecting a target as
described in subsection 3.2. fmeas

k = {(rk(z), pk(., z))}z∈Zk
contains new tracks i.e. joint updates of all predicted tracks
using each of the measurements separately; and given by:

rk(z) =

∑vk|k−1

i=1

rik|k−1(1−rik|k−1)〈pik|k−1,L
z
k〉(

1−ri
k|k−1

〈
pi
k|k−1

,pD(.,sk)
〉)2

κk(z) +
∑vk|k−1

i=1

ri
k|k−1

〈
pi
k|k−1

,Lzk

〉
1−ri

k|k−1

〈
pi
k|k−1

,pD(.,sk)
〉 (24)

pk(xk, z) =

∑vk|k−1

i=1

rik|k−1

1−ri
k|k−1

pik|k−1L
z
k(xk)∑vk|k−1

i=1

ri
k|k−1

1−ri
k|k−1

〈
pik|k−1 · Lzk

〉 (25)

where Lzk(xk) = gk(zk|xk)pD(xk, sk).
The posterior multi-object density at time k for agent

j is thus given by f jk = {(rjik , p
ji
k (.))}v

j
k
i=1 from where the

estimated number of targets n̂jk and the multi-target state
X̂j
k can be computed (see Sec. 6.4). The total estimated

number of targets at time k in the surveillance area is then
computed as n̂k =

∑
j n̂

j
k,∀j and the multi-target state

which accounts for all targets in the area as X̂k =
⋃
j X̂

j
k,∀j.

6.4 Multi-Agent Tracking Objective

Let the multi-Bernoulli distribution f jk = {(rjik , p
ji
k (.))}v

j
k
i=1

from agent j where vjk is the maximum number of hypoth-
esized targets, rjik denotes the probability of existence of the
ith hypothesized target (i.e. how likely the ith hypothesized
target is a true target) and pjik (.) denotes the corresponding
posterior density of the state of the ith target.

The expected a posteriori (EAP) estimate of number
of targets n̂jk can be computed as n̂jk = round(

∑
i r
ji
k )

and the multi-target state X̂j
k can then be computed by

taking the n̂jk components with the highest probabilities
of existence and extracting the single target states (i.e.
x̂k) from their individual posterior densities as X̂j

k =⋃n̂jk
i=1{x̂k = arg max pjik (xk)}.

In tracking, we wish to estimate as accurately as pos-
sible the n̂jk and X̂j

k for all j agents. Intuitively, one way

to achieve this is to minimize the variance in the poste-
rior distribution f jk from which we derive the above es-
timates. In this work we build upon this and we denote
the tracking objective function we wish to minimize by
ξjtrack(ujk, Z

j
k), ujk ∈ Ujk if we were going to apply at time

k the control action ujk and subsequently observe at the
same time-step the measurement set Zjk. Note here that the
received measurement set Zjk depends on ujk (i.e. the control
action taken) by the agent j through Eqn. (3) - (4). Also
observe that the objective function we wish to minimize
depends on an unknown future measurement set, i.e. the
measurement set Zjk will be received once the control ujk has
been determined and applied. In other words, this objective
function can be evaluated after the control action ujk has
been taken, because only then the measurement Zjk becomes
available.

A common approach [42], [43] around this problem is
to take the statistical expectation of the objective function
with respect to all possible values of measurements i.e.
E[ξjtrack(ujk, Z

j
k)] thus the optimization problem becomes

uj?k = arg min E
[
ξjtrack(ujk, Z

j
k)
]
. However, computing this

expectation is computationally intensive because it requires
the generation of an ensemble of measurement sets (pseudo-
measurements) Zjk for each hypothesized control action.

An alternative and computationally cheaper approach
which we adopt in the paper uses the predicted ideal
measurement set (PIMS) [44] i.e. the noise-free clutter-free
measurement set which is most likely to be obtained when
a particular control action is applied. We denote the PIMS
measurement set as Zjk|k−1 and thus the control problem
now becomes:

uj?k = arg min
ujk∈U

j
k

ξjtrack(ujk, Z
j
k|k−1) (26)

To optimize Eqn. (26) let the multi-Bernoulli dis-
tribution at time k − 1 be given by f jk−1 =

{(rjik−1(ujk−1), pjik−1(., ujk−1))}v
j
k−1

i=1 where now by using this
notation we explicitly show its dependence on the control
action that was taken for the time-step k − 1. At time k
the agent has available a set of admissible control actions
ujk ∈ Ujk given by Eqn. (6), one of which should be selected
in order to take the agent to the next state at time k.
First we compute the multi-Bernoulli predictive density

f jk|k−1 = {(rjik|k−1(ujk−1), pjik|k−1(., ujk−1))}
vj
k|k−1

i=1 which is
obtained without yet performing any control action. Then
we apply a pre-estimation step where the number of targets
n̂jk|k−1 is first estimated from the predictive density by
counting the Bernoulli components which exhibit a proba-
bility of existence rjik|k−1 > 0.5,∀i ∈ {1...vjk|k−1}. The states
of those targets are then extracted from their spatial distri-
butions to obtain X̂j

k|k−1. Then for a given hypothesized
control action ujk ∈ Ujk the corresponding PIMS Zj

k|k−1,ujk
is

generated as:

Zj
k|k−1,ujk

= Zj
k|k−1,ujk

∪ (27)

{arg max
z

gk(z|x̂jk|k−1, u
j
k)}, ∀x̂jk|k−1 ∈ X̂

j
k|k−1

Suppose now that for each pair (ujk, Z
j

k|k−1,ujk
) a pseudo-

update is performed using Eqn. (22) - (25) to compute
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the (pseudo) posterior density f̂ jk(Xj
k|Z

j

k|k−1,ujk
, ujk) from

where the number of targets is estimated. We consider
the variance of this estimate as a measure of uncertainty
which should be minimized. More specifically let f̂ jk =

{(rjik (ujk, Z
j

k|k−1,ujk
), pjik (., ujk, Z

j

k|k−1,ujk
))}

vj
k,u

j
k

i=1 then:

n̂jk(ujk, Z
j

k|k−1,ujk
) =

vj
k,u

j
k∑

i=1

rjik (ujk, Z
j

k|k−1,ujk
) (28)

σjk(ujk, Z
j

k|k−1,ujk
) =

vj
k,u

j
k∑

i=1

rjik (ujk, Z
j

k|k−1,ujk
) × (29)

(1− rjik (ujk, Z
j

k|k−1,ujk
))

where σjk denotes the variance of the number of targets
estimate. In essence, by minimizing the cardinality variance
σjk agent j chooses the control action which results in the
best estimate regarding the number of targets. This variance
is maximized when rjik (ujk, Z

j

k|k−1,ujk
) = 0.5,∀i thus we can

define the normalized variance as σ̃jk = 4σjk/v
j
k, where we

have dropped the dependence on the control action and
measurements for notational clarity.

Using the normalized variance we define the single
agent objective function to be minimized as:

ξjtrack(ujk, Z
j

k|k−1,ujk
) = (σ̃jk − 1)

√
n̂jk
Vcap

+ 1 (30)

where Vcap is a known design constant which specifies the
maximum number of targets that our agent is able to track at
a given time which is referred to as the agent tracking capac-
ity in this paper. The above objective function is bounded in
the closed interval [0..1] and it reaches the minimum cost
(i.e. best) when the agent reaches its maximum tracking
capacity i.e. n̂jk = Vcap with the maximum accuracy (i.e.
σ̃jk = 0). On the other hand the agent receives the maximum
cost when it tracks targets with the worst accuracy (i.e.
σ̃jk = 1). It is not desirable to perform poorly in tracking
mode thus the agent will try to find alternative controls for
which the number of targets tracked is maximized and/or
the variance is minimized. Additionally, an agent might
even switch to search mode if this results in better collec-
tive search-and-track performance, rather than inaccurately
tracking targets. It is worth noting that the agent will receive
the maximum cost in the case where the number of targets
being tracked is 0 i.e. n̂jk = 0. This behavior is by design
since in this situation we wish to switch the agent to search
mode.
Finally we define the multi-agent objective function for the
tracking task as the average of their individual objective
costs:

1

|α|
∑
j∈α

ξjtrack(ujk, Z
j

k|k−1,ujk
) (31)

where α ⊆ S denotes the set of agents in tracking mode.
As before we wish to minimize the objective function of
Eqn. (31). In other words given a set of agents α ⊆ S we
would like to drive the agents to the states which result in
the minimization of Eqn. (31) or the maximization of the
tracking accuracy.

Fig. 3. The figure shows an illustrative example of the search value (Z
axis) i.e. Eqn. (33) over a surveillance region of size 500m by 500m for 3
agents. The position of agents are marked with red circles. In this figure
dark areas indicate high search values i.e. in these regions targets are
likely to not be detected due to the limited sensing range of the agents.
Thus the agents have incentive to move towards these regions.

6.5 Multi-Agent Search Objective
In the previous sub-section we have defined the objective
function for the task of tracking for single and multiple
agents. In this section we are going to do the same for the
task of searching. Let us define the search value at time k for
specific location p = (px, py) ∈ A for the agent j just after
control action ujk ∈ Ujk has been applied as:

ξj(p, ujk) = 1− pD(p̃, ujk) (32)

where the function pD(p̃, ujk) is the agent’s sensing model
and p̃ = [px, 0, py, 0] constructs a location vector compatible
with Eqn. (3). The idea of defining the search value as the
complement of the probability of detection reflects the fact
that locations with low probability of detection, should have
increased value for searching. As a consequence distant
locations with respect to the agent’s location appear to have
increased search value i.e. these areas are worth exploring
in order to find new targets. Assuming pairwise detection
independence between all agents and all targets, the search
value at location pwhen accounting for a set of agents α ⊆ S
is given by:

ξα(p, {ujk : j ∈ α}) =
∏
j∈α

ξj(p, ujk) (33)

where ujk ∈ Ujk. This is shown in Fig. (3). Finally, we define
the total search value over the surveillance area, i.e. the
multi-agent search objective function as:

ξαsearch({ujk : j ∈ α}) =
1

A

∫
A
ξα(p, {ujk : j ∈ α})dp (34)

where A ⊂ R2 and A is the total area of the 2D surveil-
lance region. We should note here that the above coverage
problem does not consider the current or future target
locations whatsoever. However, it will be very interesting
to investigate in the future a multi-agent coverage problem
which takes into account locations with high probability of
target appearance.
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7 MATHEMATICAL PROGRAMMING REFORMULA-
TION

To solve the proposed problem, we derive hereafter a math-
ematical program formulation (P1) which takes into account
the mode of operation and control actions in order to jointly
optimize the search and track objective. Let j ∈ {1, . . . , |S|}
represent all available agents and i ∈ {1, . . . , |Uk|} the
control actions for each agent. The following formulation
considers all possible control actions i.e., ujk ∈ Ujk, as
described in subsection 3.3. The binary variable aji ∈ {0, 1}
identifies which control is taken by agent j when in search
mode, and binary variable bji ∈ {0, 1} indicates the control
decision for agent j when in tracking mode. Using this
notation, P1 can be transformed to the following binary non-
linear program:

(P2) min wξsearch(a) + (1− w)ξtrack(b) (35)

s.t.
U∑
i=1

aji +
U∑
i=1

bji = 1, ∀j ∈ |S| (36)∥∥∥λ1u
ji
k + λ2u

j′i
k

∥∥∥ > dminλ1λ2 (37)

λ1 ∈ {aji, bji}, λ2 ∈ {aj′i, bj′i}, j 6= j′

aji ∈ {0, 1}, bji ∈ {0, 1}, (38)
∀j, j′ ∈ {1, . . . , |S|}, i ∈ {1, . . . , |Uk|}

The objective function, as expressed in eq. (35), is a convex
sum (using scalar value w) of the search cost and the
track cost achieved for a particular task assignment (i.e.
either searching or tracking) and control decision (i.e. which
control action to take next). The w value is a user-defined
parameter representing the level of emphasis given to the
task of searching versus the task of tracking. The linear
equality constraints in eq. (36) ensure that each agent is
only in the searching or tracking mode at any instance
in time and only a single control decision in made in
that time instance. Finally, eq. (37) ensures that all agents
are a minimum distance dmin apart at any point in time
which is achieved by computing the distance for any control
points (i.e., ujik ) multiplied by the decision made in any of
the 2 modes of operation (searching or tracking) indicated
by variables aji, bji using indicators λ1, λ2. Specifically,
variables λ1, λ2 check every possible combination of aji
and bji values against all other aj′i and bj′i values to ensure
that agents in either search or track mode are not closer that
a minimum distance dmin from each other.

Similarly to (P1), the searching function can be expressed
as follows:

ξsearch(a) =
1

A

∫
A

|S|∏
j=1

|U|∏
i=1

(
1− piD(p̃, ujik aji)

)
dp (39)

which is a product of the probabilities that no agent detects a
target at a specific location p̃ in the field. These probabilities
are then integrated over the whole field A to compute the
total search value of the particular combination of agents
and specific control decisions. As shown in Eqn. (39) this
search value is normalized by 1

A where A is the maximum
value attained when all probabilities equal to 0. The tracking
accuracy can be expressed as follows:

ξtrack(b) =
1

τ

|S|∑
j=1

|U|∑
i=1

cjibji (40)

Algorithm 1 : Proposed decision and control algorithm

Input: f jk−1, ∀j ∈ S
1: Calculate the predictive multi-object density f jk|k−1 us-

ing Eqn. (18)-(20).
2: Estimate the number of targets from f jk|k−1 as n̂jk|k−1 =∑vj

k|k−1

i=1 1(rji
k|k−1

>0.5) and extract the corresponding

multi-target state X̂j
k|k−1.

3: repeat
4: iter++
5: Generate a candidate GA population of hypothesized

control actions ujik ∈ Ujk,∀j using Eqn. (6) with
constraints (36) - (37).

6: According to the generated hypothetical con-
trols generate PIMS as Zjk|k−1 = Zjk|k−1 ∪
{arg maxz gk(z|x̂jk|k−1, u

ji
k b

ji)} ∀ x̂jk|k−1 ∈ X̂
j
k|k−1.

7: Perform the pseudo-update step using PIMS to cal-
culate the posterior multi-object density f̂ jk ,∀j using
Eqn. (21)-(25).

8: Let Λiter = wξsearch(a) + (1 − w)ξtrack(b) according to
(35)

9: Evaluate Λiter and select the fittest solutions according
to (36) - (38)

10: until (iter < itermax) and (Λiter − (Λiter − 1) < ε)
11: return optimal controls {uj∗k },∀j ∈ S
12: Apply optimal control action uj∗k .
13: Receive the actual measurement set Zjk.
14: Compute posterior multi-object density f jk using Eqn.

(21)-(25).
15: Estimate n̂jk and X̂j

k from f jk (as in Sec. 6.4) , ∀j.
16: Estimate total number of targets n̂k =

∑
j n̂

j
k,∀j and

their states as X̂k =
⋃
j X̂

j
k,∀j.

which is a sum of the costs cji = ξjtrack(ujik , Z
j

k|k−1,ujik
) of

an agent j being in tracking mode taking control action i,
when control decision bji = 1. The tracking value can be
normalized by τ =

∑|S|
j=1

∑|U|
i=1 bji which is the total number

of agents in track mode.
Clearly, ξsearch(a) jointly computes the search cost for a

subset of agents being in search mode by the multiplica-
tion shown in Eqn. (39) that produce non-linear outputs.
Coupled with the binary variables of the discrete control
decisions results to an NP-hard optimization problem that
is difficult to solve exactly in practice [45]. Nevertheless,
for the particular structure of (P2) and the binary encoding
of the decision variables, a genetic algorithm (GA) can
be applied to provide adequate solutions in practice. GA
is a search-based technique that follows natural selection
principles of solutions found to be relatively good [46]. To
do that, a population of candidate solutions are generated
over the search space and evaluated using the objective
function of the problem (fitness function). The fittest solu-
tions are then recombined and mutated to generate new
populations for the next iteration. The process terminates
when specific conditions are met, including the objective
function improvement over consecutive iterations or at a
maximum number of iterations.

A genetic algorithm is used to solve (P2) with the follow-
ing key elements:
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1) Binary decision variables {aji, bji},∀j ∈ S, i ∈
{1, . . . , |Uk|}

2) The fitness function is reflected by the objective
function in (P2), i.e., Eqn. (35), and so are the linear
equality constrains in Eqn. (36).

3) Control decisions that result to agents coming at a
distance closer to dmin are prune to satisfy constraint
Eqn. (37).

4) Candidate solutions are generated around controls
of the same mode of each agent.

5) The algorithm terminates after a maximum number
of iterations has been reached or when the fitness
function did not improve more than ε.

The complete algorithm of the proposed system is shown
in Algorithm (1). The algorithm implements the recursion
which is shown in Fig. (2) and discussed throughout this
paper.

8 EVALUATION
8.1 Implementation Details
In order to evaluate the performance of the proposed ap-
proach we have conducted several numerical experiments
involving various number of agents and targets for a variety
of scenarios. In each experiment we compare the proposed
approach with the ground-truth either qualitatively or quan-
titatively. In this section we include an extensive set of the
conducted numerical simulations.

More specifically, we assume that the targets maneuver
in an area of 500m × 500m and that the single target state at
time k is described by xk = [px, ṗx, py, ṗy]>k where (px, py)
give the position of the target in Cartesian coordinates
and (ṗx, ṗy) are the velocities of the target in the x and y
direction respectively. For the target dynamics in Eqn. (1),
we consider that each target is moving according to the
near constant velocity model with the process noise being
Gaussian. Thus the single target transitional density is given
by πk|k−1(xk|xk−1) = N (xk;Fxk−1, Q) where:

F =

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , Q =

T/3 T/2 0 0
T/2 T 0 0

0 0 T/3 T/2
0 0 T/2 T


with sampling interval T = 1s. Note that we have used
a linear motion model in our evaluation for the target
dynamics and so Eqn. (1) becomes xk = Fxk−1 + vk.
The target survival probability from time k − 1 to time k
is constant and does not depend on the target’s state i.e.
pS(xk−1) = 0.99.
Once the agent detects a target it receives bearing and range
measurements thus the measurement model of Eqn. (4) is
given by:

hk(xk, sk) =

[
arctan

(
sy − py
sx − px

)
, ‖sk −Hxk‖2

]
where H =

[
1 0 0 0
0 0 1 0

]
. The single target like-

lihood function is then given by gk(zk|xk, sk) =
N (zk;hk(xk, sk),Σ>Σ) and sigma is defined as Σ =
diag(σφ, σζ). The standard deviations (σφ, σζ) are range
dependent and given by:

σφ = φ0 + βφ ‖sk −Hxk‖2
σζ = ζ0 + βζ ‖sk −Hxk‖22

TABLE 1
List of variables used for simulations

Symbol Description Values, [Units]

A Surveillance area 500 × 500, [m]
xk Target state [px, ṗx, py , ṗy ]>k , [m, m/s,

m, m/s]
T Sampling

interval
1, [s]

pS Target probabil-
ity of survival

0.99

σφ Bearing meas.
noise (std)

varies, [rad]

σζ Range meas.
noise (std)

varies, [m]

λk False alarms rate 10 [meas. per time-step]
pmax
D Max prob. of de-

tection
0.99

η Sensing model
parameter

23× 10−4

R0 Sensing model
parameter

30 [m]

∆R, NR, Nθ Agent motion
model params.

5 [m], 2, 8

GACT GA Constraint
Tolerance

10−6

GAFT (ε) GA Function Tol-
erance

10−4

GAPS GA Population
Size

400

GAMG GA Max Genera-
tions

150|U||S|

w Eqn. (35) mode
weight

0.5

with φ0 = 2π/180 rad, βφ = 10−5 rad/m, ζ0 = 1 m, and
βζ = 5× 10−5 m−1. False alarm measurements (i.e. clutter)
are generated with a Poisson rate λk = 10 uniformly dis-
tributed over the measurement space. The agent’s sensing
model parameters take the following values pmax

D = 0.99,
η = 23 × 10−4 and R0 = 30m. The agent’s dynamical
model is shown in Fig. 1 where the radial displacement
∆R = 5m, NR = 2 and Nθ = 8 which gives a total of
17 control actions, including the initial position of the agent.
The tuning parameter w which controls the weight given
to searching and tracking is set to 0.5 unless otherwise
specified. Finally, the parameter Vcap is set depending on
the simulation scenario to the maximum number of targets
that we wish a single agent to be able to track. The genetic
algorithm was implemented using the ga Matlab function.
We should note here that any optimization/meta-heuristic
method which can handle the binary program of Eqn. (35)
with integer constraints, can be used in place of the genetic
algorithm. However the genetic algorithm fits best to the
structure of our problem. Finally, in order to handle the
non-linear measurement model we have implemented a
Sequential Monte Carlo (SMC) version [34], [47] of the
multi-Bernoulli filter. When the target dynamics and the
measurement model are linear and the probability of de-
tecting targets is state independent the Gaussian version of
the multi-Bernoulli filter provides a computationally more
efficient solution [34]. Table 1 shows a list of variables and
common values used in the experimental evaluation of the
proposed approach.
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Fig. 4. The figure shows the evolution of the search cost for different
number of agents inside a surveillance area of size 500m by 500m. As
we can observe the search cost is decreasing over time which implies
that the area coverage is increasing.

Fig. 5. The figure shows the search value over the whole surveillance
area for different number of agents. As we can observe the agents take
positions which result in the maximum area coverage (the figure shows
the last time-step of a 50 time-step simulation experiment).

8.2 Results

The first set of experiments is conducted in order to investi-
gate the proposed system on searching. More specifically
the desired behavior is for the agents to jointly find the
best configuration i.e. select the appropriate controls such
that the total search value of the surveillance area is mini-
mized or the area coverage is maximized. Our experimental
setup is as follows. For a given number of agents we have
conducted 50 Monte-Carlo (MC) trials where the agents are
spawned at random locations (uniformly distributed) inside
the surveillance area. Then we let our system to run for
50 time-steps and we monitor the total search value given
by Eqn. (34). Our intuition is that the total search value
should decrease over time since the agents would try to
move to locations where the overlap of their sensing ranges,
is minimized. In other words, we would like to have the
agents spread as much as possible inside the surveillance
region to increase coverage. Figure 4 shows the average total
search value for each time-step of this experiment for 2, 3,
4, and 5 agents. As we can see from this figure, the total
search value is decreasing over time, which indicates that
the agents are trying to cover as much area as possible. It is
also clear that as the number of deployed agents inside the
surveillance region increases, the covered area increases as
well.

In order to gain more insights into the behavior of the
agents during searching, we have being monitoring the con-
trol actions assigned to them. At the end of the experiment,
the final locations of the agents for the 4 cases are shown
in Fig. 5. Interestingly, we can see that the agents take the
appropriate formation which results in maximum coverage.
For instance from Fig. 5a, we see that when the number of
agents is 2 the optimal configuration would be to take the
diagonal of the surveillance area. On the other hand when
we have 3 and 4 agents, the optimal configuration forms a
triangle and a square respectively, whereas in the case of 5
agents, the last agent moves into the middle of the area to fill
the gap. The previous experiments showed that the solution

Fig. 6. Memory-based searching: (a) The figure shows the evolution
of the search value over the whole surveillance area for various time-
steps of a 180 time-step experiment. As we can observe the agents are
continuously moving inside the surveillance area to cover unexplored
areas. (b) the corresponding search cost over same experiment.

to the problem of Eqn. (35) resulted in optimal coverage.
In other words, depending on the number of agents, the
obtained solution is a configuration of agent positions which
maximizes the area coverage or minimizes the total search
value.

We should note here that once the agents obtain a
configuration which provides the optimal coverage (Fig. 5),
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Fig. 7. (a) - (c): The figure shows the maneuvers of 3 agents for the task of joint search and track in a simulated scenario during 3 time periods.
Agent start and stop positions are marked with ? and ♦, respectively. Target birth and death positions are marked with 4 and × respectively and
their corresponding birth/death times are shown in red. (d) - (f): The figure shows the search value over the surveillance area for 3 time-steps i.e.
k = 26, 86 and 130. As we can observe the agents in search mode go to locations which result in the maximum area coverage.

Fig. 8. The figure shows the values of the search and track objective
functions for a simulated 180 time-step scenario. At each time-step, the
proposed system decides based on the cost of search and track which
mode to assign to each agent so that the coupled objective is minimized.

they lock in that configuration (i.e. there is no movement)
until something is changed (e.g. a target appears). This
is quite reasonable since the search function of Eqn. (39)
does not provide incentive for any movements once the
optimal coverage is obtained. However, in certain situations

it would be desirable to have the agents move to areas that
have not been visited for some time and temporarily take a
configuration which does not provide the optimal coverage.

In order to achieve this we extend our proposed ap-
proach to include the notion of memory as follows: The total
search value of Eqn. (39) now becomes the instantaneous
total search value at time k. The new total search value
is calculated as the weighted moving average of the κ
previous instantaneous total search values where κ is the
memory of our system. Figure 6 shows the memory-based
searching behavior of our system for the case of 4 agents
and κ = 30. More specifically, the figure shows the behavior
of 4 agents in memory-based searching for 150 time-steps.
In comparison with Fig. 5c we observe that the agents in
this experiment are continuously moving in the surveillance
area as shown in Fig. 6a. As before the 4 agents at time
k = 30 take a square formation which gives the optimal
coverage. However, since the system now takes into account
the 30 previous time-steps, at time k = 40, 50, ... we observe
that a different formation has been taken. This is because
the system remembers what areas have been visited and
pushes the agents to new locations. At k = 80 the agents
move again to form a square formation as shown in the
figure. Fig. 6b shows the evolution of the total memory-
based search cost for this experiment. As we can observe
there is an evident periodicity in this graph which is due to
the memory effect.

Next, in order to verify the effectiveness of the proposed
approach on the task of joint searching and tracking, we
have conducted several experiments with different num-
bers of targets and agents. In this section, we will give a
representative example with 3 agents and 3 targets. This
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scenario is depicted in Fig. 7 during 3 different time-
windows k = 1..26, k = 27..86 and k = 87..130. More
specifically, 3 agents enter the surveillance area of size
500m × 500m at the locations marked with asterisks in
Fig. 7a with coordinates [100, 315],[160, 415] and [48, 240]
for agents 1, 2 and 3, respectively. This experiment lasts
180 time-steps during which we have 3 target births and
3 target deaths. The ground-truth target birth/death times
are k = 27/86, k = 107/126 and k = 108/30 for targets 1,
2 and 3, respectively. The target birth locations are [35, 31],
[128, 331] and [92, 321] for targets 1, 2 and 3 respectively and
their corresponding death locations are [478, 324], [27, 489]
and [16, 492]. In Fig. 7 the target birth locations are indi-
cated by triangles, the target death locations are indicated
by crosses and their birth/death times are shown in red.
The trajectories of the agents and the targets during this
experiment are shown in Fig. 7a - 7c for periods k = 1..26,
k = 27..86 and k = 87..130 respectively.

The agents enter the surveillance area in search mode at
k = 1 and at each time-step the proposed controller decides
which mode (i.e. search or track) to assign to each agent. As
we have already discussed each agent maintains a proba-
bility distribution regarding the number of targets and their
location. The controller monitors the cost of tracking and the
cost of searching and decides what are the optimal controls
for all agents which minimize the objective function of Eqn.
(35). To summarize the cost of tracking takes into account
whether or not targets exist in the area, the uncertainty of
the estimated number of targets in the area and finally how
many and how well targets are being tracked by each agent.
On the other hand, the cost of searching takes into account
how well the area is covered by the agents.

Figure 7a shows the trajectories of all agents during
period k = 1..26. During this period no targets exist in the
area and so the controller decides to assign all agents in
search mode. The objective now is to increase coverage and
so the agents move away from each other, trying to find the
locations where the coverage is maximized. Figure 7d shows
the search value for each location in the surveillance area
for k = 26, i.e. at the end of the period. As we can observe
the agents take a triangle formation at the right locations
which results in the maximum coverage. To understand
better what is happening inside the controller, we have
recorded the raw values of the search and track objective
functions of Eqn. (39) and Eqn. (40) respectively for the
whole experiment. This is shown in Fig. 8. The first point
to note here is that the search cost is decreasing during
time-steps k = 1..26, which indicates that the coverage
is increasing. On the other hand, we can observe that the
tracking cost during the same period is maximum, since
the number of estimated targets in the area is 0. Thus the
objective function of Eqn. (35) is minimized when all agents
are in search mode.

Now, at time k = 27 target 1 appears in the area as
shown in Fig. 7b which is then being detected by agent 3
at the next time-step k = 28. During time-steps k = 28..35
agent 3 moves towards target 1 as shown in the figure and
then for the rest of the period k = 36..86, the same agent
tracks target 1. It is also worth noting that during this whole
period, agents 1 and 2 are in search mode, and are moving
to locations which will result in optimal coverage. Figure 7e
shows the search configuration of the two agents in search
mode and the resulting search values for the whole area.
Figure 8 sheds some more light into this process. During

Fig. 9. The figure illustrates the effect of the parameter w on the search
and track behavior of the system.

time-steps k = 28..35 we observe that the tracking cost is
decreasing and afterwards during k = 36..86 to be reaching
a plateau. The tracking cost is decreasing during k = 36..86
(i.e., the tracking accuracy is increasing) since the agent
comes closer and closer to the target which allows the agent
to perform better tracking. This is because the sensing and
the measurement model depend on the distance of the agent
to the targets. For distant targets, the uncertainty is higher
thus the tracking accuracy lower. Once the target is locked
in, the cost of tracking reaches a plateau. On the other hand,
the search cost increases instantly since only 2 agents (out of
3) are left in search mode, and thus the coverage has been
decreased. There is however a small improvement in the
search cost during this period as the agents take a formation
which results in better coverage.

Target 1 dies at time-step k = 86, which drops the
number of estimated targets, of agent 3, from 1 to 0 at
k = 87. This increases the tracking cost to the maximum
since no targets exist inside the surveillance area and as a
consequence the controller assigns all agents to search mode.
This is shown in Fig. 8 for k = 87..107. At k = 107 the
agents take a formation similar to Fig. 7d. During period
k = 107..130 two targets appear as shown in Fig. 7c which
are being detected and tracked by agent 1. The tracking cost
in Fig. 8 for this period reaches a new minimum since now
two targets are being tracked and so the value of tracking
over searching is increased. Agents 2 and 3 detect no target
and remain in search mode moving towards locations which
result in maximum coverage as shown in Fig. 7f. Finally,
during period k = 131..180, no targets are being detected,
thus the controller assigns all agents to search mode. The
tracking cost reaches the maximum and the agents optimize
the coverage as shown in Fig. 8.

Furthermore, we investigate hereafter, the impact of the
parameterw of Eqn. (35) on the search-and-track behavior of
the system. We assume the presence of 3 agents in locations
[100, 200], [250, 150] and [300, 400] for agents 1, 2 and 3,
respectively, and we vary w between [0...1] observing how
this affects the operating mode (i.e. search or track) of each
agent. We investigate 2 scenarios i.e. in the first scenario
a target is located in position [350, 50] and in the second
scenario a target is located in position [260, 140]. As we can
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Fig. 10. The figure shows the performance of the proposed system for
searching and tracking 10 targets with 2, 3, 4 and 5 agents.

observe from Fig. 9, values of w that are close to 0 force all
agents to switch to search mode whereas values of w very
close to 1 have the opposite effect i.e. all agents are forced
into track mode. This is a direct consequence of Eqn. (35).
Interestingly, in Scenario 1 the target located in [350, 50] is
far away from all the agents and thus for moderate values of
w close to 0.5 the system chooses to have all agents in search
mode. In particular, in this scenario the target is detected by
agent 2 however, the normalized tracking variance σ̃ of this
agent is as high as 0.9 which results in very high tracking
cost. This makes the system to prefer to have the particular
agent in searching mode rather than in tracking mode for
w ≤ 0.83. In scenario 2 however, agent 2 is tracking the
target located at [260, 140] very accurately with σ̃ = 0.05. As
a consequence the system assigns agent 2 in tracking mode
for w ≥ 0.3 as is shown in Fig. 9. In this scenario however
we can still force all agents in searching or tracking mode
with the appropriate values for w. Dynamically adjusting
w depending on a given situation is something interesting
which we will investigate in a future work.

Moreover, we investigate the performance of the pro-
posed approach with respect to the number of agents and
the number of targets. In order to quantify the performance
of the proposed approach we use the optimal sub-pattern
assignment (OSPA) metric [48] which is widely used to
measure the accuracy of multi-object filters. Our first ex-
periment is conducted as follows: We randomly generate
10 targets inside the surveillance area and we use OSPA
to quantify the effectiveness of the proposed search-and-
track approach with 2, 3, 4 and 5 agents. All agents are
spawned from the center of the surveillance area at the
start of each trial. This is done in order to simultaneously
test the performance of search (i.e. coverage) and track.
Intuitively, we would like to see the agents to start acquiring
a configuration which results in maximum coverage and
while doing so increasing their probability of finding and
tracking the scattered targets in the surveillance region.
Figure 10 shows the average OSPA error (with parameters
c = 100 and p = 2) over 30 Monte Carlo trials for 100
time-steps for different number of agents. As we can see
in all scenarios the tracking error starts high but drops
significantly as time progresses. The agents start from the

Fig. 11. The figure shows the OSPA error when 2 agents track 3, 5 and
7 targets each.

center of the surveillance area and jointly perform searching
by covering as much surveillance region as possible. This
is evident by the high OSPA error in the beginning of the
experiment. In particular, we observe in the case of 2 agents
that no targets are detected between time-steps 0 and 17.
During that time the agents maximize coverage (i.e. see
Fig. 5a). Around time-step 16 the OSPA error begins to
drop which indicates that targets are being tracked. Between
time-steps 20 to 40 the 2-agent system reaches its tracking
capacity and achieves its best performance. Between time-
steps 40-70 we can see that the error has been increased.
We have observed that when this happens the agents are
tracking single targets due to targets splits and target deaths
which increases the tracking error (while elsewhere other
targets might have been born which have not been detected
by the already occupied agents). However, when no targets
are being tracked, or the targets tracked are far away, the
agents switch to searching in order to optimize coverage.
This results in a decrease in the tracking error between
time-steps 70 to 100. Similar behavior is also true for 3, 4
and 5 agents. As the number of agents increases the time
to detect targets decreases as is shown in the figure. Finally,
we observe that the tracking capacity of the system increases
with the number of the agents, as a consequence the tracking
error decreases as the number of agents increases.

In the next experiment we investigate how the num-
ber of targets affect the performance of our system. More
specifically, we have fixed the number of agents to 2 and
we varied the number of targets tracked by each agent.
Figure 11 shows the OSPA error when 2 agents track 3, 5
and 7 targets each for 100 time-steps. We should note here
that in this experiment, the targets per agent (i.e. 3, 5 and
7) are initialized inside the corresponding agent’s sensing
range. Additionally the targets per agent move towards the
same destination and without target splits occurring for the
duration of the experiment. This is done here in order to
investigate the ability of an agent to track 3, 5 and 7 targets.
The figure shows the average error over 30 Monte Carlo
trials. As we can observe, the tracking accuracy drops as
the number of targets per agent increases. However, this
experiment shows that the proposed approach is able to
keep track multiple targets per agent. In particular, 3 and
5 targets per agent can be tracked with relatively high
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Fig. 12. The figure shows the OSPA error when 3 agents track 3 targets
with varying pmax

D values.

accuracy in this scenario.
Up to this point, all of our experiments were based on the

sensing model of Eqn. (3). In this model the parameter pmax
D

determines the maximum detection probability of an agent
with its value set to 0.99. In order to investigate the impact
of this parameter to the tracking accuracy of our system,
30 Monte-Carlo trials have been conducted of length 100
iterations, for 3 agents and 3 targets with varying values
of pmax

D . More specifically, the experimental set-up is as
follows: for each Monte-Carlo run at time-step k = 0, three
agents are randomly generated inside the surveillance area.
Then for each agent at k = 0, a single target is spawned
inside its sensing range. We leave the system to run for 100
time-steps and we measure the OSPA error. Figure 12 shows
the average OSPA error over 30 trials for pmax

D = 0.99,
pmax
D = 0.8 and pmax

D = 0.7. As we can observe the best
accuracy is achieved with a pmax

D value of 0.99. On the
other hand for pmax

D = 0.8 and pmax
D = 0.7 we observe

significant OSPA oscillations which occur due to target miss-
detections. More specifically, we have observed that a target
miss-detection especially in the area beyond the agent’s
primary radius R0 (where the probability of detection drops
below pmax

D ) results in a) increased positioning error and
b) the agent to take incorrect control action and/or switch
mode (from tracking to searching) in subsequent time-steps
which causes cardinality errors. Finally, note that the multi-
Bernoulli filter (i.e. Eqn. (19)-(25)) is best suited for situations
where the signal to noise ratio is high i.e. high probability
of detection and the clutter rate is low. These problems can
be alleviated with the more accurate labeled multi-Bernoulli
(LMB) filter [38]. The LMB filter however, is computationally
more expensive.

Finally, we conclude the evaluation of the proposed
approach by investigating some of its limitations. For this
purpose we use the following setup: We generate 5 targets
with initial positions [67, 341], [244, 272], [49, 38], [81, 79]
and [443, 40] for targets 1, 2, 3, 4 and 5, respectively.
The birth/death times for the 5 targets are k = 1/100,
k = 1/100, k = 50/100, k = 55/100 and k = 60/100.
Additionally at k = 0 the position of two agents are
[100, 298] and [300, 248] for agents 1 and 2 respectively. This
set-up is shown in Fig. 13. At k = 1 both agents detect their
nearby targets (target 1 and 2) and switch to track mode. The
figure shows with blue and orange squares the estimated
target positions. Initially the estimated target states exhibit
large positioning errors however, as the figure shows, in

Fig. 13. The figure shows a search-and-track scenario which illustrates
the limitations of the proposed approach.

subsequent time-steps the estimation error improves as the
agents have locked-in the targets. The agent trajectories are
shown with black lines. We should note here that in this
scenario we use the linear target dynamics described in the
beginning of this section to track the non-linear motion of
target 1 and target 2. It is evident from Fig. 13 that during
time-steps 20 to 50 the OSPA error exhibits high oscillations
which is due to the non-linear target behavior during that
time-window. This is also shown by the high variance in
the estimated target positions (blue and orange squares). At
time-steps 50, 55 and 60 targets 3, 4 and 5 appear in the
surveillance region following the trajectories shown in the
figure. These targets, however are not detected by any of the
agents since both agents are occupied tracking target 1 and
2. As we can observe the OSPA error increases dramatically
from k = 50 onwards. This example shows the main limita-
tion of the proposed system i.e. agents remain in a particular
mode indefinitely. One way to approach this problem is by
dynamically controlling the w parameter and periodically
forcing an agent to enter either the search or track mode
depending on the situation. Another way will be to keep
track of the visited areas in the surveillance region and store
statistics regarding the time of visit, the number of targets
detected at each area, etc. and then perform a priority-based
search in order to maximize the number of detected targets.
These ideas will be explored in future works.

9 CONCLUSION AND FUTURE WORK

In this paper we have studied the problem of jointly op-
timized searching and tracking with multiple agents in
stochastic environments. We have presented a novel uni-
fied probabilistic framework for this decision and control
problem based on Bayesian multi-object stochastic filtering
with random finite sets. We have defined suitable objective
functions for the tasks of multi-agent searching and tracking
and we have showed that the resulting non-linear binary
program can be approximated adequately by a genetic
algorithm. Finally, we have demonstrated the performance
of the proposed decision and control algorithm through
extensive numerical experimentation. Future work will look
at simpler and computationally improved approximations
of the non-linear binary program as well as alternative and
simpler objective functions with equivalent behavior and
performance. In addition, we are interested in investigating
a rolling horizon (i.e. multiple-step look ahead) predictive
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control approach for this problem and analyzing its perfor-
mance against the proposed single-step look ahead system.
We are also interested in investigating this problem with
heterogeneous agents i.e. agents which exhibit different
types of sensing models.
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[6] H. Ding and D. Castañón, “Multi-agent Discrete Search with
Limited Visibility,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), Dec 2017, pp. 108–113.

[7] X. Sun, C. G. Cassandras, and X. Meng, “A Submodularity-based
Approach for Multi-Agent Optimal Coverage Problems,” in 2017
IEEE 56th Annual Conference on Decision and Control (CDC), Dec
2017, pp. 4082–4087.

[8] S. Rahili, J. Lu, W. Ren, and U. M. Al-Saggaf, “Distributed Cover-
age Control of Mobile Sensor Networks in Unknown Environment
Using Game Theory: Algorithms and Experiments,” IEEE Transac-
tions on Mobile Computing, vol. 17, no. 6, pp. 1303–1313, June 2018.

[9] T. Linder, S. Breuers, B. Leibe, and K. O. Arras, “On Multi-Modal
People Tracking from Mobile Platforms in very Crowded and
Dynamic Environments,” in Robotics and Automation (ICRA), 2016
IEEE International Conference on. IEEE, 2016, pp. 5512–5519.

[10] S. Papaioannou, H. Wen, Z. Xiao, A. Markham, and N. Trigoni,
“Accurate Positioning via Cross-Modality Training,” in Proceedings
of the 13th ACM Conference on Embedded Networked Sensor Systems,
ser. SenSys ’15. New York, NY, USA: ACM, 2015, pp. 239–251.
[Online]. Available: http://doi.acm.org/10.1145/2809695.2809712

[11] S. Papaioannou, A. Markham, and N. Trigoni, “Tracking People in
Highly Dynamic Industrial Environments,” IEEE Transactions on
Mobile Computing, vol. 16, no. 8, pp. 2351–2365, Aug 2017.

[12] R. Dutta, L. Sun, and D. Pack, “A Decentralized Formation
and Network Connectivity Tracking Controller for Multiple Un-
manned Systems,” IEEE Transactions on Control Systems Technology,
vol. PP, no. 99, pp. 1–8, 2017.

[13] C. Xi and U. A. Khan, “Distributed Dynamic Optimization over
Directed Graphs,” in 2016 IEEE 55th Conference on Decision and
Control (CDC), Dec 2016, pp. 245–250.

[14] F. Meyer, H. Wymeersch, M. Fröhle, and F. Hlawatsch, “Dis-
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